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FINAL REPORT

EXECUTIVE SUMMARY

Focus of the Present Investigation

The focus of this research has been on the assessment of the effects of internal

friction on the response of aeroelastic systems exhibiting either explosive flutter or limit

cycle oscillations to provide a confirmation of the potential of friction as a significant

stabilizing factor in the limit cycle oscillations observed on several aircraft, e.g. F-16.

The work performed in this regard can broadly be divided into three major efforts, two

computational/theoretical and one experimental:

(1) the analysis of the effects of friction on a structural dynamic systems in which

the effects of the aerodynamic forces have been modeled. Specifically, a dashpot of

negative constant was introduced to model the unstable linear aerodynamic effects, while

an additional van der Pol restoring force was included to characterize possible stable

nonlinear aerodynamic effects. Although approximate (because of the modeling of the

aeroelastic forces), this system was shown to behave almost exactly as the aeroelastic

systems of task (2). The computational expediency of this simple model allowed to

analyze and study a vast array of cases from which broad conclusions were derived the

validity of which was later extended to the complex models of task (2).

(2) the analysis of the effects of friction on actual aeroelastic systems, i.e. airfoil

and flat plate in a uniform flow, in which the aerodynamic forces are computed in time in

parallel to the structural dynamic analysis. A tight coupling between structural motions

and flow field was achieved by proceeding iteratively at each time step until both sets of

field equations (structural and aerodynamic) were satisfied.
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(3) the experimental testing in the DLR- Gdttingen (Germany) Transonic wind

tunnel of a NLR7301 airfoil equipped with a friction device similar to the ones studied in

tasks (1) and (2). This effort was followed by a data analysis that revealed mostly

similarities, albeit a few differences, with the theoretical results of tasks (1) and (2)

above.

The overall results of this study demonstrate that friction can indeed provide a

stabilization of an impending flutter and can significantly decrease the amplitude of

existing limit cycle oscillations of aeroelastic systems with an appropriate selection of the

friction device parameters most notably natural frequency and coefficient of friction.

Participants and Publications

These efforts were carried out by the principal investigators, Prof. Danny D. Liu

and Marc P. Mignolet from Arizona State University and the former graduate students

Anthony M. Agelastos and Goang Gae Choi both of whom have successfully defended

their M.S. thesis on this topic. The executive summary of results presented below

highlights the findings discussed in details in their theses:

1. Agelastos, A.M., Effects of Coulomb Friction on Flutter and Limit Cycle Oscillations

According to a Structural Dynamic Model, M.S., Arizona State University, May 2005.

2. Choi, G.G., Effects of Coulomb Friction on Aeroelastic Systems, M.S., Arizona State

University, August 2005.

and which are included to this final report as Attachments. Several additional persons

contributed very significantly to the experimental component of this project, most

specifically Dr. Dallas Kingsbury from Arizona State University and the staff of the



DLR-G~ttingen Institute for Aeroelasticity, in particular Dr. Guido Dietz and Dr. G(tnter

Schewe.

In addition to the above theses, several conference papers have been published

that describe the findings of this project:

1. Choi, G.G., Agelastos, A.M, Mignolet, M.P., and Liu, D.D., "On the Impact of

Internal Friction on Flutter Onset and Limit Cycle Oscillations Amplitude," International

Forum on Aeroelasticity and Structural Dynamics 2005, Munich, Germany, Jun. 28-Jul.

1, 2005. Paper IF-022.

2. Kingsbury, D.W., Agelastos, A.M., Dietz, G., Mignolet, M.P., Liu, D.D., and Schewe,

G., "Limit Cycle Oscillations of Aeroelastic Systems with Internal Friction in the

Transonic Domain - Experimental Results," Proceedings of the 46th Structures,

Structural Dynamics, and Materials Conference, Austin, Texas, Apr. 18-21, 2005.

AIAA Paper AIAA-2005-1914.

3. Choi, G.G., Agelastos, A.M., Mignolet, M.P., and Liu, D.D., "Effects of Internal

Friction on the Dynamic Behavior of Aeroelastic Systems," Proceedings of the 45th

Structures, Structural Dynamics, and Materials Conference, Palm Springs, California,

Apr. 19-22, 2004. Paper AIAA-2004-1591.

4. Mignolet, M.P., Agelastos, A.M., and Liu, D.D., "Impact of Frictional Structural

Nonlinearity in the Presence of Negative Aerodynamic Damping," Proceedings of the

44th Structures, Structural Dynamics, and Materials Conference, Norfolk, Virginia, Apr.

7-10, 2003. Paper AIAA-2003-1428.

Finally, the following three journal papers are in preparation:



1. Kingsbury, D.W., Agelastos, A.M., Dietz, G., Mignolet, M.P., Liu, D.D., and Schewe,

G., "Measurements of Limit Cycle Oscillations of Aeroelastic Systems Induced by

Internal Friction in the Transonic Domain - Experimental Results".

2. Agelastos, A.M., Choi, G.G., Mignolet, M.P., Liu, D.D., and Liao, Y., "Effects of

Internal Friction on the Behavior of Aeroelastic Systems. Part I: Increased Stability and

Limit Cycle Oscillations due to Friction only".

3. Choi, G.G., Agelastos, A.M., Mignolet, M.P., and Liu, D.D., "Effects of Internal

Friction on the Behavior of Aeroelastic Systems. Part II: Reduction of Existing Limit

Cycle Oscillations".

Summary of Findines

The findings of the three separate tasks (l)-(3) will be summarized in order. The

structural dynamic model of task (1) was a two degree of freedom system in which the

largest mass represented the wing while the smallest one would model the sliding

component, e.g. a missile or store. The negative dashpot and the van der Pol force were

assumed to act only on the largest mass (wing). Further, the sliding mass was assumed to

be connected to the wing through a friction slider,. a spring (k1 > 0), and possibly a

dashpot (positive viscous damping, c1 > 0).

The system was analyzed first without a van der Pol term. Further, in the absence

of elastic deformation during sliding, i.e., for k1 = 0, it was shown that an exact

procedure can be followed to transform the nonlinear equations of motion into a set of

nonlinear algebraic equations and that a stabilization of the unstable aerodynamic forces

was possible. The most negative damping that could be stabilized in this configuration

was in fact shown to be 2 r/r2 (for r << 1) where r denotes the ratio of the two masses



of the system. The system was found to exhibit periodic motions with possible stick

phases. The introduction of a nonzero spring constant was shown to lead to an increased

stabilization potential that is maximum in a "tuned damper" configuration, i.e. when the

natural frequency of the primary component (the wing alone) closely matches the natural

frequency of the secondary alone (sliding mass on spring k1). In addition to this benefit,

a broader set of motions was also observed. Besides periodic (referred to as single

frequency here) solutions, multiple frequency motions were also found to exist,

especially near the tuned damper configuration while the single frequency solutions were

typically obtained near the stability border. Both continuous slip and stick slip multiple

frequency motions were noted which were shown to be either aperiodic or chaotic.

Further, the transition from single to multiple frequency was shown to be a Hopf

bifurcation. It was finally observed that the maximum steady state response of the wing is

typically minimum for the single frequency motions occurring just next to the

bifurcation. A sharp increase in response level is obtained after bifurcation that results

from the beating induced by the presence of multiple frequencies.

The inclusion of a van der Pol term did not significantly change the above

findings with the noted exception that the system is always stable even in the absence of

friction in which case it experiences a continuous slip single frequency motion. In fact, it

was observed that the van der Pol term leads to a significant reduction of the large

amplitude beating excursions obtained otherwise in connection with multiple frequency

solutions and appears to postpone the Hopf bifurcation. In regards to stick slip vs.

continuous slip, the decrease in response implied by the presence of the van der Pol term

was found to increase the likelihood of stick slip motions which typically occur at lower



response levels than continuous slip solutions do. The effects of the coefficients of

friction (the static and dynamic coefficients were assumed equal here) was studied next.

It was first noted that the amplitude of continuous slip motions (single or multiple

frequency) is linearly scaled by the coefficient of friction and this parameter plays no

further role in these cases. When stick phases occur, a more complex dependency on the

coefficient of friction is obtained. Next, it was found that 2 stable solutions can be

obtained for low coefficients of friction. One such solution has a low amplitude and is

dominated by friction effects alone with little influence of the van der Pol term. The

reverse statement holds for the other solution, the amplitude is large with the stabilization

dictated by the van der Pol force with little effect of friction. As the coefficient of friction

increases, these two solutions become closer together and eventually merge. The

amplitude of response then appears to increase monotonically with further increases of

the coefficient of friction. The effects of a second, viscous damper in parallel to the

friction element was finally considered. It was found that the two damping mechanisms

do not necessarily reinforce each other and that the friction hinders the viscous

dissipation when stick occurs. In fact, nonzero amplitude limit cycle oscillations were

noted with friction in situations where the equilibrium (zero response) would in fact be

stable without friction.

Two tightly coupled aeroelastic systems were considered in task (2):

(A) a flat-plate airfoil model supporting a torsional friction device composed of a

disk flexibly connected to the plate by a torsional spring and squeezed between two rough

surfaces, The behavior of this system is studied when placed in a uniform, inviscid and

incompressible flow.



(B) a NACA0012 airfoil placed in a uniform inviscid and incompressible air flow

and supporting either the same frictional device as the flat plate or a block sliding in a

rough internal track.

The system A does not exhibit limit cycle oscillations in the absence of friction, it

is either stable or displays an explosive flutter. The system B has been shown in some

earlier studies to exhibit, in the absence of friction, aerodynamic-driven limit cycle

oscillations near the flutter speed. The analysis of these two systems thus provide distinct

perspectives on the role of friction, on systems exhibiting explosive flutter (system A)

and those in which an aero-driven limit cycle oscillation occurs (system B).

The system A was analyzed first and a stability analysis of it was initially

conducted with the disk in either continuous sticking or frictionless slipping modes to

assess the expected stability domains. It was shown and justified that the system in slip

mode exhibits instabilities at earlier flow velocities than its stuck counterpart. This

property allows for the existence of both super- and subcritical limit cycle oscillations.

While the subcritical limit cycles were observed to be unstable, a zone of stable

supercritical limit cycle oscillations was found that extends about 3% past the flutter

speed of the system without the friction device. This gain shows a good stabilization

property since the moment of inertia of the selected friction device system is only 5% of

the moment of inertia of the plate. The observed limit cycles exhibit either continuous

slip or stick slip behaviors and are either single frequency (periodic) or multiple

frequency (aperiodic or chaotic) with the latter ones appearing primarily at the highest

flow speeds and for the highest frequencies of the torsional friction device. The above

results were obtained by time marching the plate equations of motions with a rational



approximation of the Theodorsen function but a harmonic balance approach was also

developed that led to very good approximations of the single frequency continuous slip

limit cycle oscillations.

The system B was considered next with a friction component modeled by a block

moving in an internal track. While limit cycle oscillations were observed, it was also

shown that the block could become stuck at a position far from its original one and thus

would create a change of inertia sufficiently large to stabilize the airfoil. This effect does

not involVe any dissipation due to friction and is thus not relevant to the present effort.

Accordingly, this frictional model was not considered further and was replaced by its

torsional counterpart (as in the flat plate analysis) which does not suffer from the same

defect. The results of time marching computations demonstrate that friction can

substantially decrease the level of the limit cycle oscillations, especially with a low

coefficient of friction, but that increases in the response are also possible, depending on

the selection of the natural frequency of the torsional friction device. As in the flat plate,

continuous slip and stick slip solutions were observed most of which were single

frequency (periodic).

The last task, i.e. (3), of this project focused on the design, fabrication, and testing

of an actual friction device on an airfoil. The basic design of the system is a rotating disk

connected to the airfoil by a torsional spring of natural frequency closely matching that of

the airfoil to achieve the tuned damper arrangement discussed above. The spring was

instrumented with strain gauges to measure the angle of torsion of the system. Finally, a

complex system was designed to produce the required normal force to induce friction on

the moving airfoil without transmitting any shear or moment. Preliminary shaker testing



in the ASU vibrations laboratory successfully validated the design: stuck, stick-slip, and

continuous slip motions could be observed by varying the preload on the disk. Full blown

testing in the DNW-TWG transonic wind tunnel at DLR led to the observation of the first

recorded limit cycle oscillations with friction effects and relative motions of the disk and

airfoil. Only single frequency motions were observed but both continuous slip and stick

slip behaviors were found. The measurements demonstrate a slight effect of friction and

the subcritical nature of the limit cycle oscillations. This behavior was explained by

analyzing the natural frequencies of the stuck and slipping configurations as in task (2).

* Several findings are however still unexplained, e.g. the asymmetry of the sticking phase,

the continuous slip to stick slip transition associated with an increase in response, and the

near Mach independent amplitude of torsional response.

The overall results of this study demonstrate that friction can indeed provide a

stabilization of an impending flutter and can significantly decrease the amplitude of

* existing limit cycle oscillations of aeroelastic systems with an appropriate selection of the

friction device parameters most notably natural frequency and coefficient of friction.
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ABSTRACT

The appearance of limit cycle oscillations in aeroelastic systems has usually been

associated with nonlinearity in the aerodynamics and/or in the structural restoring forces.

It has however been recently suggested that nonlinearity in the damping mechanism,

more notably friction between a small moving part (or many such parts) and the wing,

may indeed be a source of post-flutter limit cycle oscillations. The present work provides

a first validation of this expectation.

In the first part of this thesis, a two-degree-of-freedom structural dynamic model

is considered in which the biggest mass, representing the wing, and the smaller one,

modeling the sliding component, are connected by at least a friction element. The

unstable aerodynamic effects are approximated by a dashpot of negative value acting on

the wing alone. The response of this system is analyzed in a variety of situations, i.e. with

an additional spring between masses, an additional positive damper between them, and/or

with a van der Pol restoring force acting on the wing and modeling stabilizing nonlinear

aerodynamic effects. It is indeed found that the friction can stabilize an otherwise

unstable aeroelastic system, especially when the natural frequency of the wing and

sliding masses considered alone are close together. Periodic, aperiodic, and chaotic

motions of the wing are observed and discussed. The presence of continuous slip, stick-

slip, and stuck motions is also demonstrated and analyzed. Finally, predictions from the

harmonic balance method are shown to match well the amplitude of continuous slip,

periodic motions.

This theoretical work was complemented by a series of tests conducted in the

transonic wind tunnel of the Deutsches Zentrum fdr Luft und Raumfahrt (DLR) in

iii



G6ttingen, Germany. The design of the friction test article, its preliminary validation in

the ASU vibrations laboratory, and the final wind tunnel testing are presented and

discussed. The wind tunnel results demonstrated a slight stabilization effect of friction.
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CHAPTER 1

INTRODUCTION

Several modem aircraft, most notably some fighters with external stores, have

been found to exhibit Limit Cycle Oscillations (LCO), i.e. self-sustained vibrations.

Clearly, these vibrations are undesirable from all perspectives: they affect the comfort of

the pilot and/or passengers, they may negatively impact the accuracy in shooting, and

generally produce fatigue in the aircraft structure. Accordingly, a series of investigations

have focused on explaining the occurrence of these limit cycle oscillations in aircraft and

it is generally recognized that these vibrations occur in the neighborhood of flutter. They

further have been classified into supercritical (or hard) and subcritical (or soft) limit

cycles oscillations with the critical point being flutter. Supercritical LCO's thus appear at

flow/flight speeds larger than the flutter speed while their subcritical counterparts occur

below flutter speed. Both supercritical and subcritical LCO's are the manifestation of a

nonlinear aeroelastic system, as a linear damped aero-structure model can only exhibit a

decay toward rest or an explosive, divergent behavior. Thus, paramount to LCO

discussions is the origin, aerodynamic and/or structural, and nature of the nonlinearity

present.

Nonlinear aerodynamic effects have often been invoked, e.g. the transonic shock

separation mechanism '2 in the context of the F-16, but structural nonlinearities have also

been discussed. Most often considered have been the large deformation stiffening (as in

panel flutter3), and freeplay4'5. The work by Chen et al.6 and Mignolet et al. 7 suggested

however that a different mechanism, specifically friction, could qualitatively explain

many of the LCO findings associated with the F- 16. Interestingly, such an explanation is
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also supported by studies performed on turbomachine blades8'9 that demonstrated that

friction can, in certain conditions, stabilize flutter and lead to supercritical LCO. A recent

investigation has also shown the value of friction to damp out the effects of gust'0 .

In this light, the focus of the present investigation and of a related one" is to

conduct an in-depth study of the effects of friction on a class of aeroelastic systems

exhibiting either explosive flutter or limit cycle oscillations. A distinguishing feature of

the wing/wing-store system considered here is that the friction mechanism must be

internal to the system, i.e. no rubbing takes place between components separately

supported (e.g. between two blades of a rotor) but rather the components in relative slip

must be mounted on the wing (or be the wing itself). In keeping with the

phenomenological aspect of the present investigation, the analysis was conducted under

the following structural simplifications.

(i) The friction effects will be assumed to originate from a single, rigid

component moving relatively with respect to the wing and to be characterized by a

preload N and coefficients of friction u, and PD/

(ii) The changes of external structural geometry that occur due to the relative

sliding will be neglected. This assumption appears justified as all aircraft components are

subjected to a large preload so that a large amount of energy can be dissipated with only

small relative motions at the joints. Accordingly, there will be no direct effect of the

moving component on the aerodynamics.

Combining the above two assumptions led to the introduction" of an airfoil

model with internal friction, more specifically with a block sliding in a rough track, see
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Fig. 1.1. While the behavior of this system was shown to exhibit several of the

characteristics expected from friction, it was also found to be very sensitive to the change

of inertia that occurs as the block is moving along the track. In fact, it was noted that a

static displacement of the block in the track provided a significant stabilization property

which rendered extremely difficult the assessment of the effects of friction. This situation

was then remedied 12 by assuming that the rigid component of Fig. 1.1 is a disk that spins

around its center of mass inside the airfoil, see Fig. 1.2. Note that this new model does

satisfy, as well as its counterpart from Fig. 1.1, the simplifications (i) and (ii) above.

am " "' h (t)

x(t)

Fig. 1.1 Aeroelastic system with sliding block.

Fig. 1.2 Aeroelastic system with rotating disk.

In this overall context, the specific objectives of the present effort are twofold.

First, a thorough analysis will be conducted on a purely structural dynamic model
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representative of the aeroelastic systems of Fig. 1.2 to assess the potential of friction to

stabilize an explosive flutter and reduce the amplitude of existing limit cycle oscillations.

This study will also concentrate on the properties of the response of the system and on the

influence of many of the parameters involved. The second objective is the design,

fabrication, and testing of a friction device similar to the torsional spring and disk of Fig.

1.2. The preliminary testing of the device was successfully accomplished in shaker tests

in the ASU Vibrations Laboratory. Then, its final testing took place in the DLR transonic

wind tunnel mounted on a NLR 7301 airfoil undergoing limit cycle oscillations around

Mach number 0.6.



CHAPTER 2

TWO-DEGREE-OF-FREEDOM DYNAMIC MODEL

The focus of this part of the investigation is on gaining a basic physical

understanding of the effects of friction on the stability/response of aeroelastic systems.

Given that very little is known about this topic and that friction inevitably brings out

complex nonlinear characteristics, it was decided here to select the simplest dynamical

model that would exhibit the features of the problem. Friction in aircraft must take place

between two components of the aircraft, as opposed to, for example, the wing and the

ground. A two-degree-of-freedom thus seemed the lowest order system to be considered.

The components of a wing are well fastened together and thus one expects that a relative

motion can only be of a small component. Thus, the "sliding" mass (M 2 below) must

have a mass much less than the wing mass (MI). It remains to discuss the "aeroelastic"

modeling. In keeping with the novelty of the topic, it was decided to construct a

mathematically simple aerodynamic model that would exhibit the noted explosive flutter

and limit cycle oscillation behavior. These possible behaviors are included in the model

through a dashpot of negative value in parallel with a van der Pol restoring force. The

negative dashpot allows unstable motions to grow, as in a explosive flutter case, but the

van der Pol force, if present, reinstates stability at sufficiently high levels of response.

Finally, deformations of the components were allowed by the inclusion of springs. The

general model to be considered here is thus represented in Fig. 2.1.

In a series of papers, Tondl1 3-1 5 investigated a more complex version of Fig. 2.1 in

which a structural damper also exists between the two masses. His approach, based on
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harmonic balance (see section 2.4), presented only limited information and was restricted

by the necessary assumptions of periodic and continuous slip motions. Unfortunately, as

will be found in the ensuing sections, these assumptions are applicable only in an

extremely limited set of cases so that the results of References 11-13 neither carry the

generality nor the accuracy required here.

It should finally be noted that the structural components of the models of Figs 1.2

and 2.1 (i.e. without aerodynamics and without the dashpot c and van der Pol term 8) are

in fact very much alike, they are identical if the plunging motion (vertical displacement)

of the airfoil is neglected. In this case, the displacements x1 and x2 denote the pitching

and disk angles, the masses M1 and M2 are in fact the corresponding inertias, and k1 is

the torsional spring stiffness.

k

Fig. 2.1 2DOF system with full coupling

2.1 Computational Details

The system in Fig. 2.1 would be considered a linear system if it did not contain

the Coulomb friction element. Friction adds significant complexity to the simulation of

the system in that it can completely or partially inhibit the relative motion of the two

masses and that it switches direction abruptly as the relative velocity changes sign. In
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fact, during unidirectional (no velocity reversal) slip phases as well as stick phases, the

equation of motion of the system are linear, so that the nonlinearity is wholly

concentrated at the transitions. These observations emphasize the need to accurately

capture the transition of states (stick-slip, slip-stick, slip-slip). To this end, the time step

was reduced in the neighborhood of these transitions by a factor as large as 128 through

successive halving. Further, the equations of motion were integrated numerically using

the IMSL routine DIVPRK (Runge-Kutta of orders 4-5) with a low tolerance of 10.8

(both relative and absolute errors) and a time step typically smaller or equal to 0.01 s

while the fundamental linear frequency is close to 1 radian per second.

2.2 Assessment of Friction on an Aeroelastic System Exhibiting Explosive Flutter

The analysis of the 2-degree-of-freedom system was conducted in two separate

steps. It was first analyzed under the assumption . = 0 which implies that no nonlinear

stabilizing aerodynamic effect exists. Accordingly, the linear system (without friction)

exhibits only an unstable behavior typical of explosive flutter. The considerations of

stabilizing nonlinear aerodynamics, i.e. 8 # 0, will be conducted in Section 2.3. Two

separate cases were further considered with 8 = 0, i.e. k,--0 or k,•0. Under the first

condition, the 2-degree-of-freedom system obtained in slip phases is classically damped

(at the contrary of the situation k1•0) and an exact formulation (EF) of the response can

be derived without too much difficulty. This approach, as well as a direct numerical

simulation, (NS), of the equations of motion were thus performed for k1=O. In the second
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step, nonzero values of k, were considered but only the numerical simulation was carried

out.

2.2.1 Primary-Secondary Coupling Through the Friction Element Only

The system under consideration in this section is the 2-degree-of-freedom (2DOF)

system shown in Fig. 2.2.

Fig. 2.2 2DOF system with friction coupling.

2.2.1.1 Exact Formulation

Following Den Hartog16 (see also Pesheck and Pierre17), a periodic solution of the

equations of motion can be obtained by marching the solution from unknown initial

conditions at t = 0 to an unknown time T at which periodicity conditions are enforced.

Such an approach can be used for continuous slip behavior as well as solutions with

stick-slip but the number of stick-slip phases must be chosen a priori. This process

transforms the solution of the nonlinear differential equations into the solution of a set of

nonlinear algebraic equations for the unknown initial conditions, period (or half period

T), and stuck times t1 if applicable. This process is exemplified below on the system of

Fig. 2.2.
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Since the equations of motion of the system of Fig. 2.2 are time invariant, the time

t 0 can be arbitrarily selected. Then, assume for convenience that this time corresponds

to a stick-slip or slip-slip transition. Thus, the initial conditions were selected as

21(0)=i 2(0)=v 0 ; x,(0)= x1 0 and x2(0)=x22. (2-1)

During the ensuing slip phase, it is assumed that *i>i2 so that the response is described

by the equations of motion

M13ý,+ e+ kx= F31 and M2 .2 = -F 31  (2-2)

where

"F31 =iDN sn(.2 - i) (2-3)

The response of the two blocks can thus be expressed as

x, (t)=e-Gt [A2 cosew• 2t + B2 sin a),2t] -PDN (2-4)

k

and

x2(t) =0 AIDt2 + VOt + x 20  (2-5)
2M 2

where

=2- 2o-- -' )o (2-6)

A2 =x1 +- ; B2  v0 + •'2A 2  (2-7)
k Cd

If a continuous slip solution takes place, the unknown initial conditions in Eq. (2-1) and

the half-cycle time T will be evaluated from the periodicity conditions

x, (T) = -- , (O) = -X1o; 'I (7)= -•(o)=-Vo; '2(T)=-'2(o)=-Vo. (2-8)
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Enforcing these constraints leads to a nonlinear equation for the half-cycle time T and

ensuing linear equations for the unknown initial conditions. Specifically, imposing the

periodicity condition at T for i2 yields

UDN T -2vo. (2-9)
M2

The periodicity conditions for k, and x,, respectively, yield

['2'2 1+c02 si oIl, IVO,'A2  sin oa 2T e0 1e2 2 +cos coz 2T - (2-10)
L)d2 Lo~d2]

and

Aje2w2T (C odv2T4+ ino -ý sina/2 21pN (-l
A2[e-¢•; cood~+• 2-sn T +1 + Vo e- °;sin~od•T=- 2 .l.(2-11)

0 ) d2 }J 0d 2  d

Combining Eq. 2-9-2-11 then results in the single nonlinear algebraic equation for the

half-period T

2r sin oC2 T + Co',T[cos co' 2T + cosh 'co2'T] = 0. (2-12)

A stick-slip solution was also obtained. The transition from slip to stick was

assumed to take place at time t= to such that the relative velocity of the two blocks

vanishes, i.e.

kI (t0 -"2 (t0 = 0 (2-13)

or

4,2to [vo cosa,•to -(¢t'B 2 + Aw, 2)sin•c to] -DN to +vo. (2-14)

After the transition, the slider sticks and the system is governed by the equations of

motion
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(M1 +M 2)3 +cý +kx, =0 and 'k2 (2-15)

The corresponding response can thus be expressed as

x, (t)=e-'e':w[A, cos Co'it + B, sin o41t] (2-16)

where

_ k

M1 +M 2
CAM + M2)+.M

~~~ c/M +M) , =CO, -,,2'/-i

2col' d

A, =xl(to) and B (to)+';IOjXI(t°) (2-17)
doI

2.2.1.2 Numerical Results

A parametric study of the 2-degree-of-freedom system with kj =0 has revealed

that the internal friction mechanism stabilizes the unstable aerodynamics and leads to

LCO for a broad range of negative damping ratios (see Fig. 2.3). Further, the response of

the system was found to exhibit many of the features already observed in connection with

the 1.5 degree-of-freedom system6,7,17, e.g. at most one stable solution was observed in all

cases considered, an upper-lower branch structure exists in the plot of amplitude versus

damping, Fig. 2.4 (the lower branch is stable and denoted by S while the upper branch is

unstable and denoted by U), and the solutions were both periodic and symmetric.

However, at the contrary of that simpler system, the two-degree-of-freedom model with

k1 = 0 displays two types of LCO solutions: continuous slip (CS) and stick-slip (SS, a

single stick phase per half-cycle).
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While the unstable solutions were all characterized by a continuous slip behavior,

the stable motions were primarily corresponding to a stick-slip behavior although a small

zone of stable continuous slip responses were observed near the largest stabilizable

damping ratio. The results obtained with the exact formulation matched very closely their

numerical simulation counterparts even in a stick-slip motion18.

The results shown in Fig. 2.3 and 2.4 were obtained for a typical friction setup

(/US=IUD=0. 2 5 , N=1, k =1) but for a rather large mass ratio, i.e. Ml=l, M2=4.25.

While the phenomenological features described above were found to also hold at much

lower values of the secondary/sliding mass M 2, it was found that the largest stabilizable

damping ratio is approximately proportional to the mass ratio, r=M2/MI. A relationship

between the damping and mass ratios is now desired to fully understand Fig. 2.4. To this

end, the condition of Eq. (2-12) was reconsidered and it was argued that the largest

damping ratio is such that (see also Fig. 2.4)

d T d,; 0 (2-18)
d4' dT

Then, differentiating Eq. (2-12) with respect to T and using Eq. (2.18) leads to

2r cos Cod 2T + cOs °)'2T + cosh(;'2c°'2T) (2-19)

+Co 2T [-sin Wod2 T+ sinh('o42 T)] =d 2 .

Equations (2-12) and (2-19) can be simplified as

2rsinu + u[cos u + cosh mu]= 0 (2-20)

2r cos u + cos u + cosh ru.- u sin u + 77u sinh r/u =0 (2-21)

where
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U Owd2 T ,'o'T= - ;2 u.R (2-22)

It is then desired to solve Eq. (2-20) and (2-21) for the damping ratio and half-period, i.e.

for u and q given r small. When the mass ratio goes to zero, it is expected that the

maximum stabilizable damping is zero and thus that there exists a solution of Eq. (2-20)

and (2-21) with r = 7 = 0. It is indeed the case and requires that u ;r. For small but

nonzero mass ratios, a perturbation analysis will be carried out with

u =l'"+a. (2-23)

In fact, it is found that

-2ra ;+r(a22 + 772;r2)=0, (2-24)
2

2r
a = (2-25)

In terms of the half-period and damping ratio, these results imply

2r
T = 7" 2r -(2-26)

and

(1,2) -kiM• 2r for r<<l. (2-27)
)max Cma
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Fig. 2.3 Typical response of mass M, for k, 0.
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According to this relation, a 2% damping ratio stabilization would require a mass

ratio r of at least 0.1, a larger value than would be expected to be typical of the F-1 6. A

larger stabilization capacity of the two mass system of Fig. 2.2, and thus potentially a

lower mass ratio, would require an increased relative response of the two masses. Such an

increase can be achieved by increasing the transfer of energy between the two masses. In

view of the primary-secondary nature of the system, it is expected that the difference in

the natural frequencies of the primary (w, = kl/M1 ) and the secondary (co2--0 for the

system with k1=0) will be the dominant parameter controlling the energy transfer.

Further, a maximum transmission could be conjectured to occur when CO1,=O2.

2.2.2. Primary-Secondary Coupling Through the Friction Element and a Spring

J m2

Fig. 2.5 2-degree-of-freedom system with friction and stiffness coupling.

In this section, the stiffness k, was varied from zero and the system response was

obtained by numerical integration. A series of values of the stiffness k, and of the

damping coefficient c were considered with the mass ratio r = 0.05 and the single set of

initial conditions X1(0) =X2 (0)= 0.1 and A' (0) =xý2(0) = 0.



17

The wealth of results obtained (see Fig. 2.6) has shown, first and foremost, that

the above conjectures were perfectly valid. Indeed, each of the dots on Fig. 2.6(a)

indicates a stable solution and thus:

1) an increased stabilization capability is possible by varying the natural frequency of

the sliding mass alone, and

2) the maximum stabilization possible appears to take place when o),=C02, or

equivalently k, =r= 0.05 here since k is set to unity.

In analyzing these results, it could be argued that the increase in stabilization

could simply be a result of an increase in stiffness and a corresponding reduction of the

(negative) damping ratios of the system since it is the dashpot value c which is fixed.

These comments suggest that a more definite proof of the increased stabilization would

require the analysis of the most negative damping ratio for each of the stable systems of

Fig. 2.6(a). This effort yielded Fig. 2.6(b), which also displays the trends stated above,

thereby demonstrating their validity. Note further that the largest stabilized damping ratio

observed was 3.5% which is almost twice what is required for the F-16 6 while the mass

ratio of 0.05 is quite reasonable. It is then concluded that the proposed friction based

LCO mechanism is indeed possible.

Having established the existence of an increased domain of stable solutions, it is

important to assess the phenomenological characteristics of these solutions and to

compare them with those obtained with k=--O. In fact, four different types of solutions

were observed when k1•O that can be characterized as single frequency stick-slip (SFSS),

single frequency continuous slip (SFCS), multiple frequency stick-slip (MFSS), and
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multiple frequency continuous slip (MFCS). The term single frequency is used here

somewhat freely to describe a solution with a simple period and with minimal harmonics,

see Fig. 2.7 for such a solution (continuous slip example). Note in particular that the

magnitude of the third harmonic of the response of the mass M, is only 1% of its

fundamental counterpart. For comparison, "multiple" frequency solutions, see Figs 2.8

and 2.9, exhibit a beating phenomenon (see Figs 2.8(a) and 2.9(a)) that is associated with

the presence of two frequencies close to the dominant one, see Fig. 2.8(b). The

corresponding phase plane plots (Figs 2.8(b), 2.9(c)) clearly show the complexity of these

motions as compared to the single frequency solution, see Fig. 2.7(c). A different

perspective into the phase plane features can be obtained by sampling the time histories at

specific times. In forced response problems, the sampling is accomplished every cycle of

the excitation but in the present self-excited problem, it was found convenient to monitor

the displacement and velocity of mass M, when the relative motion achieved maximum

values. The corresponding sampled phase plane plots are shown in Fig. 2.10. For a

periodic motion, only a single dot appears, as seen for the SFCS solution. The MFCS

solution on the contrary leads to a close curve while the MFSS solution is characterized

by a similar curve and a densely populated domain. It is tentatively concluded from those

figures that the corresponding MFCS and MFSS solutions are aperiodic and chaotic,

respectively. Note that the difference in behavior between k, = 0.039 and 0.040 was not

easily detectable from the time histories and/or full phase plane plots but is quite clear

from the Poincare-type plot of Fig. 2.10.
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It was next desired to analyze the "magnitude" of the response as a function of the

stiffness k, and the damping constant c. Since an amplitude cannot be properly defined

in the multiple frequency situation, it was decided to study the highest level of response

obtained in the steady state part of the computed response instead, see Fig. 2.11. Note

that the curves are not plotted continuously at the change of solution type, i.e. from single

to multiple frequency and vice versa. The general tendency of these curves is that the

level of response decreases from the edges of the stable zone toward its center

k = r =0.05, as expected from the increase in energy transfer. Further, the largest

response is substantially increased by the beating phenomenon of Figs 2.8(a) and 2.9(a),

i.e. as the solution switches from a single to two dominant frequencies.

2.2.3 Changes in Solution Types - Bifurcations

The arrangement of the 4 solutions types in the c - k, or - k1 domain, see Fig.

2.6, is very interesting. Near the edges of the stable zone, it appears that the single

frequency solution only is present. Further, it exhibits a stick-slip (SFSS) behavior only

for the smallest values of the negative damping and a continuous slip (SFSS) through

most of the domain. This observation is physically expected as a continued slip is likely

to provide an increased dissipation and in that respect is consistent with the k, =0

findings of Fig. 2.4(a). As the stiffness k1 is varied (increased or decreased) toward the

center of the stable domain (kj-r), a change of solution takes place and the single

frequency solution switches to a multiple frequency one, first maintaining the continuous

slip (for sufficiently large negative damping), then exhibiting stick phases.
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The appearance of the multiple frequency solutions, not seen in the simpler,

=0 case, may be associated with the two natural frequencies of the linear system.

Indeed, for small mass ratios and for values of kj r, the two system frequencies are

close to each other and could be producing the tightly spaced peaks of Fig. 2.9(b).

Further, when k, is exactly equal to r, the corresponding (negative here) damping ratios

are also equal so that contributions of both linear modes to the response would be

certainly be expected in this case. As the stiffness k, deviates from the mass ratio r, the

two damping ratios rapidly differ from each other so that the response should emphasize

more heavily one of the two modes, i.e. the one characterized by the most negative

damping ratio. These observations provide a tentative explanation for the presence of

three dominant frequencies near the center of the stable domain, i.e. kj r, but only one

frequency near the edges of this region as seen in Fig. 2.6.

0.01 3

F0.0001

1 1E-06

1 E-08

1E-10

f (Hz)
a) Normalized Fourier Transform of X1

Fig. 2.7 A typical "single" frequency continuous slip solution, M 2 = 0.05,
k1 = 0.06, c =-0.07.
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Fig. 2.11 Largest response of mass M, as a function of the stiffness k1 for different
values of the damping constant c.

A more formal approach can be undertaken to better clarify the transition,

bifurcation in fact, of solutions from single to multiple frequencies. This approach,

referred to as Floquet analysis'9 , relies on the availability of the periodic, steady state

solution at a time t, x(t). If the equations of motion can be linearized around this steady

state solution, the response after one cycle, x(t) + 5x(t + T), corresponding to an imposed

perturbations at the beginning of the cycle, i.e. 8x(t), can be expressed as

8xh + T)= P 8x(t). (2-28)

In this equation, P is a square transition matrix which can be identified by proceeding in

turn with small perturbations of each of the state variables (4 in the present context) and

computing the corresponding perturbed solutions after one cycle. Repeating the argument

of Eq. (2-28), the perturbation after n cycles is related to the original one, 8x(t), by the

matrix p. , Then, the steady state solution x(t) will be stable, i.e. the effects of the
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perturbation 5x(t) will disappear as t - oo, if pn ._ 0 when n -- oo or equivalently if

the eigenvalues of P are all less than 1 in magnitude.

This result is valid in forced vibrations cases in which time is defined by the

excitation. In self excited problems however, it is possible for the perturbed solution to

converge to the unperturbed steady state response but time shifted by 8t. In fact, this
situation occurs for 6x(t) = x"(t) 5, as x(t)+ xt) is then simply x(t + t). Thus, after

one period, the perturbed response is x(t + 5t + T) = x(t + 5t) from the periodicity of the

exact steady state solution. From this relation, it is thus concluded that an eigenvalue of

+1 should always be present in P in self excited problems.

The estimation of the matrix P was performed for c -0.07 and a series of values

of k1 for which a single frequency solution is encountered, i.e. k,1 E (0.34, 0.3885] and the

corresponding eigenvalues (complex and imaginary parts) are plotted in Fig. 2.12. The

persistent eigenvalue at +1 is clearly seen and so is the convergence of two eigenvalues

toward the unit circle as k, - 0.3885. From this last observation, it is tentatively

suggested that the transition from a single to multiple frequencies is a Hopf bifurcation.

Considering this data for monotonically decreasing values of k1 provides also a

perspective on the loss of stability that occurs for k1 z 0.34. Specifically, it is noted that

the real eigenvalue of value <1 is slowly progressing toward the unit circle, suggesting

that the loss of stability is accomplished through the occurrence of a double eigenvalue at

+1.
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Fig. 2.12 Eigenvalue plot of Floquet analysis, c =-0.07.

2.3 Assessment of Friction on an Aeroelastic System Exhibiting Post Flutter

LCO

2.3.1 Primary-Secondary Coupling Through the Friction Element and a Spring

Fig. 2.13 2-degree-of-freedom system with van der Pol force.
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The simple system of Fig. 2.5 does not exhibit limit cycle oscillations in the

absence of friction, its response exponentially increases as time grows. It was thus

necessary to add another stabilizing factor to induce limit cycle oscillations in the

absence of friction. One such term often encountered is a van der Pol (vdP) force which

is proportional to the product of the square of the displacement and the velocity. This

additional force was assumed to act on the primary mass, see Fig. 2.13, yielding the

equations of motion
C +(1-'x2 l + (k+k, )x, -kjx 2  F31  (2-28)

and

M 2 i 22-ki x1 +k x2 =-F 31  (2-29)

where

F31 = ,UDN sgn(i 2 - i) during slip (2-30a)

1F311 I psN during stick. (2-30b)

A nondimensionalization of the equations of motion provides significant insight into the

behavior of the system. To this end, introduce

col--= / M, ; Co2---@k / M 2 ; r=M2 1/M,;

r=wC1 t; y,=x,(k/ DN), i=1,2;

i=cco1/2k; 9=,k 2 /2/.2N2 ; "=kIk. (2-31)

Then, the equations of motion, Eq. (2-28)-(2-30), can be rewritten as

y +24'(1-y• )y +(l+kl)Yl-k 1 Y2 = F31  (2-32)

and
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ry2-kiy+ki•y 2  -F 31  (2-33)

where (.' denotes the derivative with respect to t,

31 = sgn(y'2 - y•) during slip (2-34a)

and

1F31-1 < .s 1/tD during stick. (2-34b)

Note in particular from Eq. (2-32)-(2-34) that the amplitude of response is

proportional to PD if /s =UD and 5 = 0. Further, this property also holds for nonzero

values of 5 provided that S is held constant.

As in the previous section, a numerical approach was adopted to study the

response of the system. As before, M, and M 2 were selected to be 1 and 0.05, and k was

set to 1. Further, the static and dynamic coefficients of friction were selected equal,

ps =pD =,p. The other parameters were varied to provide a thorough perspective on the

response of the system.

The system of Fig. 2.13 was analyzed with different values of the van der Pol

constant 5 and the amplitude of response and stability plots for each of these values was

generated. Shown in Fig. 2.14-2.17 are the results corresponding to 8= 0.025 (Fig. 2.14

and 2.15) and 5=0.04 (Fig. 2.16 and 2.17). To clarify the discussion of these figures,

note first that the van der Pol system is stable for all cases considered and thus

stabilization must occur for 5> 0. Further, the response of the van der Pol system without

friction is a single frequency (continuous slip) solution.
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Comparing Fig. 2.6(a), 2.15, and 2.17, it is first seen that the unstable regions of

Fig. 2.6(a) are replaced by stable single frequency continuous slip motions characteristic

of a van der Pol dominated response. Note further that the domain of multiple frequency

solutions shrinks as c5 is increased leaving mostly single frequency motions. This finding

may be explained by noting that the multiple frequency solutions typically lead to large

amplitudes because of the beating, see Fig. 2.11. For such large amplitudes however, the

stabilization of the van der Pol term is significant forcing a decrease, and eventually

disappearance, of the beating effect. The decreased presence of the multiple frequency

solutions is also visible from the amplitude of response plots, Fig. 2.11, 2.14, and 2.16,

where they imply higher amplitudes than the neighboring single frequency solutions.

Notice on these same figures that the sharp transitions to instability in Fig. 2.11 are

replaced by smooth increases toward the amplitude corresponding to the van der Pol

alone.

Another change in the character of the solution concerns the transition from stick-

slip to continuous slip. It can be seen from Fig. 2.6(a), 2.15, and 2.17 that stick-slip

solutions typically occur at low values of the negative damping ratio and correspond to

smaller response level for which the dissipation during the slip phase is sufficient to

stabilize the motions. Continuous slip solutions on the contrary appear at higher response

levels where the amplitude of response is large enough to force the continuous motion of

the sliding block. It is seen from Fig. 2.15 and 2.17 that the value of the negative

damping ratio at which the stick-slip to continuous slip transition occurs increases (in

magnitude) as the van der Pol parameter 5 is increased. This result is in fact expected as
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an increase in 5 promotes stability and forces lower response levels thereby favoring

stick-slip solutions. An increase of the damping constant (larger negative) must then take

place to increase the energy introduced in the system and to induce a continuous slip

behavior.

The V-shape of the amplitude plot, slightly visible for 6=0 (Fig. 2.11), quite

clear for 8= 0.025 (Fig. 2.14), and obvious for 5= 0.04 (Fig. 2.16), demonstrates that an

amplitude of response substantially below the van der Pol alone level can be achieved

with friction. Thus, friction can also play an important role in reducing the level of

response of existing limit cycle oscillations. Note further that friction is most effective

when k• t 0.05, especially for large negative damping ratios, as was already noted in the

previous section.

The above discussion has focused on the behavior of the response as a function of

1, c, and k, for a fixed value of u (= 0.25) and it is now desired to assess the role of the

friction coefficient. To this end, the value of 6 was set to 0.06 and the response of the

system of Fig. 2.13 was determined for two damping coefficients, i.e. c = -0.04 and -

0.09, as function of k, and u. Surprisingly, it was found for both values of c that two

stable solutions exist for low coefficients of friction, see Fig. 2.18 and 2.19. Each of these

two solutions essentially involves a single stabilization factor: the very low amplitude

solution is associated with the low friction coefficient without any significant effect of

the van der Pol term. In such conditions, a stable solution must exhibit a small amplitude

as the low level of friction will not provide much dissipation. At the contrary, the large

amplitude solution is only marginally affected by the small frictional term and it is
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primarily the van der Pol force that dictates the response. As the coefficient of friction

increases, its effect on the high amplitude solution increases implying a decrease of the

response level. Further, a higher coefficient of friction provides a balance of the unstable

aerodynamic forces at higher amplitude levels. Thus, the amplitude of the lower (resp.

higher) solution increases (resp. decreases) until they both merge into a single one

solution as seen in Fig. 2.18 and 2.19. The value of the coefficient of friction at which the

merging of the solutions occurs is a particular good operating point as it yields the

smallest value of the maximum stable solution. Note further that the existence of two

solutions occurs at high negative aerodynamic damping only when the natural

frequencies of the two blocks alone are identical or almost so.

2.3.2 Primary-Secondary Coupling Through the Friction Element, a Spring, and a

Dashpot

Dissipation associated with the relative motion of the two masses may include

more than just friction, most notably viscous effects, and it is finally desired here to

assess how the presence of an additional damping mechanism would affect the

conclusions drawn in connection with the system of Fig. 2.13. To this end, a dashpot

(viscous element) was added between the two masses, see Fig. 2.1, and a parametric

study of the response magnitude and character (i.e. single vs. multiple frequency and

continuous slip vs. stick-slip or stuck behavior) was undertaken.

It was demonstrated earlier that the coincidence of the natural frequencies of the

primary and secondary systems is a particularly critical condition since it leads to a
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maximum transfer of energy from the primary to the secondary where it can be dissipated

by friction. The effectiveness of the frictional device is thus maximum in that

configuration. Accordingly, the present study of the effects of the damping coefficient c,

was performed under this matching requirement, i.e. with k, =0.05. Finally, the

coefficients of friction were selected to take on the representative values us =1 n = 0.25

and the van der Pol parameter was chosen as the intermediate value of 5 = 0.025. The

steady state response of the system of Fig. 2.1 was then computed for a series of values of

c1 and c and the largest response (e.g. the amplitude of the motion in "single" frequency

solutions) as well as the character of the solutions (i.e. single vs. multiple frequency,

continuous slip vs. stick-slip vs. stuck configuration) was recorded, see Fig. 2.20 and

2.21.

It should first be noted from Fig. 2.20 the existence of a minimum value of the

largest response of the primary mass at some intermediate value of the damping

coefficient cP. When c, is less than this threshold, it would appear that the friction and the

dashpot reinforce each other to provide an increased dissipation and correspondingly a

reduced response. A more refined perspective on this effect may be obtained from the

classification of the various solutions involved, see Fig. 2.21. Specifically, it is seen that

there exists a thin layer of values of cl near c,= 0 in which the character of the solution

changes rapidly, from multiple to single frequency. In fact, a comparison of Fig. 2.20 and

2.21 indicates that it is also in this small zone that the largest response decreases.

It is thus concluded that this decrease goes hand in hand with a change of

character of the solution, from multiple to single frequency. To complete the analysis, the
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time histories of the response of the primary system (mass M1 ) were inspected for values

of C, in this thin layer, i.e. for c, E [0,0.001], see Fig. 2.22. It is clearly seen from these

figures that the decrease of the largest response is in fact associated with a decrease of the

level of beating, not with a noticeable decrease in the mean of the steady state response. It

remains then to explain how this change of character takes place and why it is so

sensitive with respect to c1.

In this context, consider the plots of the largest response and the corresponding

classification obtained with c, =0, see Fig. 2.14 and 2.15, and note that the multiple

frequency solutions only exist in a narrow zone of stiffnesses k, around k= 0.05. It was

argued earlier that the appearance of the beating is associated with a Hopf bifurcation in

which an eigenvalue of the perturbed problem reaches the unit circle. Damping naturally

provides decay over a given time and thus forces these eigenvalue away from the unit

circle, toward the origin. For c, large enough, i.e. 0.001 in the case considered, the largest

eigenvalue never reaches the unit circle and the single frequency solution is maintained

throughout. Two more observations can be made in this regard. First, a minimum of the

largest response does not occur, see Fig. 2.14, for the two least negative values of c, c = -

0.02 and -0.03, consistently with Fig. 2.15 since the corresponding solutions for c, =0

are both single frequency. Finally, note that the amplitude of the single frequency

motions for c,= 0.001 and k1= 0.05, i.e. 6.7-6.9 (see Fig. 2.20), are very close to the

interpolation of the values obtained from Fig. 2.14 for c,= 0 and k1= 0.04 and k= 0.06

suggesting a continuity of the solution as a function of kj in the absence of multiple

frequency bifurcation.
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The above discussion has clarified the behavior of the solutions for small values

of cl but has not addressed the increase in response observed in Fig. 2.20 for c1 > 0.00 1.

In fact, it was found that the increase in damping of the relative motions of the two blocks

leads primarily to a decrease of the amplitude of these motions and that the decrease is

large enough to decrease the energy dissipated per cycle, even with the increase of c1 .

Thus, the amplitude of response of the primary mass must increase as noted in Fig. 2.20.

The decrease of amplitude of the relative motions also increases the likelihood of a

sticking and thus justifies the continuous slip to stick-slip transition that is observed on

Fig. 2.21 for all c values as c1 increases. For very large values of c1 , the two blocks stick

together and the motion is governed by the negative dashpot c and the van der Pol

restoring force.

It was desired to confirm the above observations in another situation, namely for a

different value of the van der Pol coefficient J. To this end, the computations were

repeated with J = 0 and the results, largest response and classification, are presented in

Fig. 2.23 and 2.24. The narrow zone in which both transition from multiple to single

frequency and decrease of the largest response occur is again present, albeit broader in

Fig. 2.23 and 2.24 as compared to Fig. 2.20 and 2.21. Further, the ensuing increase of the

amplitude of response as the damping coefficient cl is increased is also shown. All

results thus appear consistent with those of Fig. 2.20 and 2.21.
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The above findings and discussion demonstrate the benefit of a small viscous

damping in addition to the friction as a mean of controlling the solution character, more

notably the single to multiple frequency bifurcation. A larger viscous damping is

however not advisable as it leads to a reduction of the dissipation potential of the

secondary system.

Having established the role in friction alone and in concert with a viscous

damping element, it is desired next to evaluate the stabilization potential of the viscous

element alone. To this end, the computations were reiterated but for • = 0 with 8 = 0.025

and the corresponding amplitudes of the response of the primary mass are shown in Fig.

2.25 as function of c1 . Interestingly, it is found that the steady state amplitude is zero for

a fmite range of values of cl, c1 e [0.009,0.018] for all values of c considered,
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demonstrating that the equilibrium position is then stable even with the presence of the

negative dashpot c. The study of the linearized system (i.e. without the van der Pol term)

is appropriate to explain this behavior and accordingly, the complex mode shapes and

eigenvalues of the linear, non-classically damped 2-degree-of-freedom system were

determined. At low values of c1 , both mode shapes involve large relative motions which

further increase as c1 is increased so that both modal damping ratios increase and

eventually become positive (e.g. for c1 = 0.009 when c = -0.12). The system is then stable

and the steady state amplitude is 0. Further increases in c1 first lead to small increases of

the relative motions of both, then of only one of the mode shape with the other one

exhibiting a decrease. Notwithstanding the increase in c1 , this reduction in relative

motion of the mode shape is significant enough to force a reduction of the corresponding

modal damping which eventually becomes negative (e.g. for c1  0.018 when c = -0.12).

The equilibrium is then no longer stable. Further increases of cl lead to further

reductions of the relative motions of that mode which eventually converges to [1 1] as cl

becomes very large. That is, the motions associated with this unstable mode correspond

to the stuck configuration and the steady state response of the system is governed by the

van der Pol restoring force on the stuck system, exactly as in the case g • 0.
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for different values of the damping constant c and coefficient of friction u, noted as

c; p. k= 0.05, 6 = 0.025. The crossings between the corresponding p = 0 and

u = 0.25 curves are circled in red.

A comparison of the curves of Fig. 2.20 and 2.25, see Fig. 2.26 for a few values

of c, is of particular interest. Most importantly, note that the curves corresponding to

pu = 0.25 and u = 0 cross each other at a relatively low value of the damping coefficient

c1 . For values of cl smaller than this threshold, the largest response of the steady state

motions of the system with friction is less than its frictionless counterpart. On the

contrary, for values of c1 larger than the threshold, the frictionless system is the one

exhibiting the smallest response. In fact, in the interval c1 E [0.009,0.018] (for

c > -0.12), the frictionless system returns to equilibrium while the one with friction

maintains a fairly large amplitude limit cycle oscillation! In this case, friction may
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significantly increase the LCO amplitude, albeit it is a purely dissipating mechanism. The

explanation of this surprising observation resides in the sticking potential of friction.

Consider for example the response of the system with cl E [0.009,0.018] and c > -0.12

to a small perturbation. As explained above, the frictionless system has a stable

equilibrium for these parameter values and thus the perturbation decreases with time,

returning to zero after an infinite time. The system with friction does not exhibit this

behavior. Specifically, at the first occurrence of a zero relative velocity, the system

becomes stuck because the forces involved (inertia, dashpot c1 , and spring k1 ) are too

small to maintain slip. Accordingly, there is no more dissipation and the response of the

primary mass increases rapidly under the action of the negative dashpot. Eventually, the

response becomes large enough to force slipping and dissipation resumes in both the

dashpot c1 and the friction element and convergence to a limit cycle takes place. If this

limit cycle is perturbed, for example through a reduction of the responses of the two

masses, sticking will, occur at the next occurrence of a zero relative velocity and the

motion will then grow back under the sole action of the aerodynamic effects (negative

dashpot).

It is thus concluded that friction does not always lead to a decrease of the

amplitude of LCO.

2.4 Harmonic Balance

The harmonic balance method is an approximate technique for the estimation of

the periodic steady state response of nonlinear systems. In this approach, the response is
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assumed in the form of a limited Fourier series the unknown constants of which are

evaluated by matching as many cos nw t and sin nco t components as possible in the

equations of motion. Note in the present context of self excited vibrations that the

fundamental frequency co is also unknown.

The harmonic balance method will be used here to obtain an approximation of the

continuous slip response of the system of Fig. 2.5. At the contrary of the exact

formulation, this development is not seriously affected by the value of kI and thus was

carried out directly in the general case k, # 0 and then particularize to lc =0 for

comparison with the exact formulation and the numerical simulation results. It might

seem at first that the displacements of the two masses should both be expressed as sine

and cosine of all frequencies ncot but it should be recognized that the system of Fig. 2.5

is time invariant and thus that any specific time can be considered as the temporal origin

t-=0. It is particularly convenient here to select this point to match a maximum value of

the relative displacement of the two masses. Under this condition, a single harmonic

approximation of the system response is

x1 -A, coscot+Bz sincot and y = x 2 -x 1 =Ycoswt. (2-35)

Next, it is required to obtain the corresponding representation of the nonlinear

forces, i.e. the force of friction here. Given the above form of the relative response, it is

directly found that a one term Fourier series is

PDn sgn(x.) 4/DN sin cot (2-36)
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The estimation of the unknown parameters A., Bz, Y, and w is then achieved by

introducing Eq. (2-35) and (2-36) in the equations of motion

M121 +ci 1 +(k+k,)x, -kX 2 =F 3 1 and M 2 22 -k, 1x +kX 2  -F 31  (2-37)

where

F31 = -tDNsgn(xz -:ix). (2-38)

This process leads to a set of four nonlinear algebraic equations for the unknowns.

After some manipulations, it was found that

(r-r p 2 (l-p 2 Xl-p 2-r p 2 p' 2-ar p'2-p-r p O (2-39)

B_ 4 /.on . A = (r+ 1)pz-1 4/.DN (2-40)
Arp2 k 22rp3  Tk

and

A• 2  (2-41)

(0- rpz)

where

p=/wco2; r= M 2/IM; and ar= klk (2-42)

The solution of Eq. (2-39) is achieved first to yield the value of the frequency p. The

remaining parameters are then estimated from Eqs (2-40) and (2-41). When the stiffness

k, vanishes, the cubic characteristic equation (Eq. 2-39) is easily solved to yield

2 _ (r+4'2 +4ý22 -16422( + r)
P = 2(l + r) (2-43)
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A two-frequency harmonic balance approximation was also obtained by considering both

aot and 3o t sine and cosine terms in both x,(t) and y(t). That is,

x, =A 1 coscot+B 1 sincot+A 3 cos3cot+B 3 sin3ot (2-44)

and

y =x 2 -xl =C1 coso t+D 1 sinot +C 3 cos3oat+D 3 sin3wt. (2-45)

Since the temporal origin t=0 is selected to correspond to a peak of the relative response,

one must have s'(O) 0 or

3D 3 +D 1 =0. (2-46)

Further, the 2-harmonic Fourier series of the friction force is easily shown to be

u.DN sgn(i) •x 4DN sin cot + 4/'DN sin 3Co t (2-47)
z 37r

Then, introducing Eqs (2-44), (2-45), and (2-47) in the equations of motion, Eqs (2-37)

and (2-38) and comparing terms in sincot, coscot, sin3wot and cos3cot leads to the

following 8 equations

(1-p2)A1 +2ipB 1, -'c 1 =0 (2-48)

2~ -4
-24'pA, +(l-P2)BI -crD1 o- -4 (2-49)

(1-9p2)A3 + 6ýý pB 3 - C C3 =0 (2-50)

6 p- 3 + (I49P2)B3 -CD 3  4 (2-51)3z

-rp 2 A, +(a -rp2)C' =0 (2-52)

-rp 2 B1+(a-rp2)DI= 4  (2-53)
z2
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-9rp 2 A3 + (a-9rp2.)C3 =0 (2-54)

2 2 4
-9rp2B3 +(O-.9rp2 )D3 =± (2-55)

Equations (2-46) and (2-48)-(2-55) represent a set of 9 equations for the unknown

parameters of the response and the frequency p. The solution strategy proceeds as

follows. First, Eqs (2-49), (2-51), (2-53), and (2.55) are combined to produce 3

homogenous equations and 1 non-homogenous one. The former equations form with Eqs

(2-46), (2-48), (2-50), (2-52) and (2-54) a set of 8 homogenous equations which are linear

in the 8 coefficients A1, ..., D3 for a given value ofp. To obtain a non-trivial solution, it

is thus required that p be chosen so that the determinant of the matrix of coefficients of

these equations vanish. The nonlinear equation resulting from this condition is a

polynomial of order 16 in p. For each of its roots, the coefficients A1, ..., D3 can then be

evaluated by solving the system of linear equations formed by 7 of the 8 homogenous

equations and the non-homogenous one.

The above procedures were followed to obtain 1- and 2-harmonic approximation

of the continuous slip response of the system of Fig. 2.5 and their accuracy was assessed

by comparison with the numerical simulation and/or the exact formulation. The special

case k1 = 0 was considered first and the results are presented in Fig. 2.4. Clearly, there

are two frequencies satisfying Eq. (2-43) (one for the + sign, the other for the - sign) and

thus the harmonic balance solution yields two estimates of the continuous slip solution,

one of which (R) approximates the true response while the other is a fictitious solution

(F). It is seen from Fig. 2.4 that the accuracy of the harmonic balance (solution R) is not
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very good in the small domain of existence of these continuous slip solutions. Further, the

inclusion of a second harmonic does not seem to improve substantially the accuracy of

the estimates of the amplitude and frequency of response, see Fig. 2.4 in which (HBM)-

CS and (HBM2)-CS are the 1- and 2-harmonic approximations of the continuous slip

solutions.

30
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15 •-HBM2F
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.0
0.035 0.036 0.037 0.038 0.056 0.058 0.06 0.061 0.062

kI

Fig. 2.27 Relative errors (in %) in the maximum response of mass M, as predicted
by the harmonic balance method with 1 and 2 harmonics as functions of k1,

M2 = 0.05, c = -0.07 (Note the split horizontal axis).

The accuracy of the harmonic balance method was also assessed for a broad range

of k1 • 0 situations. Shown in Fig. 2.27 are typical relative errors on the maximum

response obtained in the SFCS domain by using the 1- and 2-harmonic approximations

and corresponding to a frequency close to the one obtained by numerical simulation.
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Given these good qualitative results, the harmonic balance method was also used to

estimate the boundary of the stabilization domain, see the curves HBM1F and HBM2F on

Fig. 2.6. It appears from all these results that the harmonic balance estimates were

qualitatively correct in predicting the amplitude of the response and that the addition of a

second harmonic provided an improved quantitative matching with the simulation results.

The difference in accuracy of the harmonic balance method for k1 = 0 and k1 # 0

may result from the naturally harmonic character of the response of the sliding mass in

the latter case as opposed to the parabolic time histories obtained in the former case.



CHAPTER 3

DESIGN AND TESTING OF A FRICTION DEVICE

The second part of this thesis focuses on the design, fabrication, and testing of a

friction device similar to the disk-torsional spring system of Fig. 1.2 which was later

tested in the Deutsches Zentrum fLir Luft und Raumfahrt (DLR) transonic wind tunnel.

The results of Chapter 2 serve here as stepping stone for the parameter selection of the

device components.

3.1 Design and Fabrication

The initial plan for the friction device was an installation inside the airfoil,

consistently with Fig. 1.2, but this option led to some daunting challenges, e.g.

fabricating a novel airfoil (cost constraint), fabricating a novel airfoil with enough space

internally for the device, having access to the device once the airfoil was finished, etc. In

this light, it was proposed by DLR to mount the device rigidly to the airfoil but outside of

the wind tunnel, i.e. on the balance rigs located on either side of the wind tunnel and

airfoil. The first bending natural frequency of the airfoil is known to exceed 100IHz while

the vibrations of the device were expected to take place near the flutter frequency, i.e.

around 30Hz. It was thus argued that the airfoil would appear rigid and thus that the 2-

dimensional character of the problem would not be compromised by the friction

mechanism being lumped at the ends of the airfoil as opposed to being distributed along

the span.
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Even then, the design of the friction device was very substantially constrained in

regards to weight, size, and to a smaller extent cost. From the standpoint of validation of

the present findings, it was desired to achieve an inertia ratio of at least 5% for the effects

of friction to be most noticeable but to maintain the occurrence of the flutter/LCO in the

transonic range, it was necessary to limit this ratio to about 3%. The size limitations

originated from the need to maintain the balance rig in its present configuration.

The lack of access to the balance rig, and thus to the friction devices, during the

wind tunnel testing was the next important issue to be resolved. Indeed, to minimize the

forces on the wind tunnel walls and to permit the use of porous walls, the central section

of the wind tunnel, including the balance rigs, is confined to a plenum which is

depressurized, and thus not accessible, during the operation of the wind tunnel. Further,

repressurization is possible when the wind tunnel is down but the repressurization!

depressurization process requires about 1 hour, i.e. a significant portion of the total

testing time available. For validation of the theoretical results, it was however desired to

proceed with a parametric study of the effects of the disk properties (inertia ID and/ or

stiffness kD) and friction force (paT) on the response of the airfoil-device system. This

situation motivated the search for ways to vary the inertia/stiffness of the disk and the

friction force remotely. While no simple means for changing the inertia/ stiffness

remotely was devised, it was decided to vary the friction force by regulating the normal

force through the compression of linear springs by a linear actuator.

While the use of linear actuators provided the remote variation capability desired,

it also incurred a large increase in dead weight incompatible with the tight limits of mass
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and inertia to maintain the LCO in the transonic range. The only solution found to this

problem was the mounting of the actuator system on the laboratory fixed frame of the

balance rig. The solution of the weight issue then triggered a new problem: the

transmission of the normal force and normal force only (no tangential force nor moment)

from the laboratory fixed actuator system to the disk moving in the plane perpendicular to

the force to be applied. This last significant difficulty was resolved primarily through the

use of the cage of a thrust ball bearing inserted between the disk and the actuator system.

The well lubricated balls of the bearing allowed the relative motion, transferred the

normal force, and generated only a minimal side (tangential) force with good lubrication.

Finally, the offset of the normal forces on the actuator and the disk induced by the motion

of the latter would normally generate a moment on the actuator system (severely limited

by the manufacturer) and potentially (through any deformation) a non-uniformity of the

pressure applied on the disk. Both of the potential issues were resolved by inserting a

spherical ball contact along the path of the force transmission in the actuator system. That

is, the actuator system pushed on the ball which then in turn pushed on the thrust bearing

cage. The point contacts between the ball and the contacting shaft insured the

transmission of a normal force only.

The detailed design of the friction device and actuator system was then

undertaken, with regular interaction with DLR, within the software SolidWorks using an

accurate CAD/CAM model of the balance rig provided by DLR. The final detailed

model, shown in Fig. 3.1-3.3, can be summarized as follows. The torsional frictional

device is composed of a disk connected to the airfoil (outside of the wind tunnel section)
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through a torsional spring machined to a specific stiffness. The disk is sandwiched

between two steel rings providing the friction. The normal force is provided by the

actuator system shown on the right in Fig. 3.3, i.e. generated by a linear actuator based on

a step motor. The motor pushes on three parallels springs to generate a controllable force

the magnitude of which is monitored through a load cell mounted in series and a LVDT

recording the translation of the motor. The force is then transmitted from the load cell to

a small spherical ball, thereby preventing the transmission of anything else than a normal

force, and then to a "thrust washer". This subsystem is composed of a disk and the cage

of a thrust bearing, the latter of which is squeezed between the thrust washer disk and the

external friction ring of the device. The bearing cage permits the transmission of the

normal force even with relative motion of the two disks (thrust washer and friction disks).

Note that the bearing cage was loosely held in place (preventing it from falling) by three

springs connected to long arms themselves attached to the support of the actuator system.

The actuator permits the variation of the normal force while a change of the natural

frequency of the frictional device is allowed by the addition/removal of masses at the

periphery of the disk and through the switch of torsional springs (2 different stiffnesses

were available).

The fabrication of the various parts was performed by the two ASU machine

shops as well as an outside machine shop.
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Fig. 3.1 Exploded view of the disk, spring, and friction ring system.

Fig. 3.2 Complete view of the airfoil, friction device, and actuator system in the
balance rig in the DLR wind tunnel.
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4M.,

Fig. 3.3 Complete view of the friction device and actuator system in ASU
vibrations laboratory.

3.2 Instrumentation

The instrumentation of the DLR wind tunnel permits the measurement of the

pressure at a series of locations on the wind tunnel walls, of the lift and moment on the

airfoil, of the plunging displacement and pitching angle, and of the displacements at

selected locations on the airfoil. Of primary importance for the present validation were

the plunging displacement and pitching angle but also the relative angle of torsion 0. This

measurement was obtained through the reading of the strain in the coils of the torsional

spring (from a strain gauge mounted directly on the thin coils). The calibration factor

between angle and strain was obtained experimentally for each spring. The procedure for

exciting and controlling the airfoil and other details on the experimental capabilities were

the same as those used in prior investigation of transonic LCO at DLR.

3.3 Testing in ASU Vibrations Laboratory

The primary purpose of the testing that took place in the ASU Vibrations

Laboratory was to validate the design and fabrication, i.e. to demonstrate that relative
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motions of the disk with respect to its support could take place and that these motions

could be controlled by the force actuator. In particular, it was desired to assess the

capability of the device to exhibit stick, stick-slip, and continuous slip motions. To this

end, the device was mounted on a bar of a design similar to the device support in the

wind tunnel. This bar was then attached to a frame, itself mounted on the Ling shaker of

the ASU Vibrations Laboratory as to impart plunging and mostly pitching of the bar. The

shaker was used to provide a harmonic excitation at or near 30Hz, i.e. similar to what

could be expected in the wind tunnel. The normal force applied was varied to assess the

capability of the device to exhibit the required motions.

The exact classification of the observed motions was not always very easy

because of the noise present in the measurement, about 10 microstrains. Nevertheless, it

is believed that all three types of motions were indeed noted. Stuck motions were

observed for low excitation levels from the shaker and large normal forces as expected

and are not discussed further here. Continuous slip responses were initially noted at zero

normal force, see Fig. 3.4, but also for nonzero forces, see Figs 3.5 and 3.6. Stick-slip

motions were observed first, see Figs 3.7 and 3.8, with sticking taking place at the peak

displacements but an intermediate, asymmetrical sticking phase has also been

encountered, see Figs 3.9 and 3.10. It is unclear what created the asymmetry in the

response, two possible sources are the torsional-axial coupling of the spring and/or the

variations of the normal force (see the load cell time history on Figs 3.9 and 3.10) which

could have resulted from vibrations of the shaker. In regards to the former issue, note that

the spring wants to displace axially as it is twisted in a direction (compression or
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extension) that is dependent on the direction of torsion (clockwise or counterclockwise).

If the force applied by the friction rings is not the same on the two sides, this axial-torsion

coupling would induce a variation of the normal force that is related to the torsion angle

which might produce the asymmetrical behavior observed.
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Fig. 3.4 Continuous slip response with zero normal force at 30Hz excitation.
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Fig. 3.5 Continuous slip response with nonzero normal force at 30Hz excitation.
1000

STorsional Spfing Strain Gauge

9. 400-

0

-200 i , I I

179.95 180 180-05 180.1 180.15 180)2
T'I'me (3)

Fig. 3.6 Continuous slip response with nonzero normal force at 30Hz excitation.
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Fig. 3.7 Stick-slip response with nonzero normal force at 30Hz excitation.
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Fig. 3.8 Stick-slip response with nonzero normal force at 30Hz excitation.
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Fig. 3.9 Stick-slip response with nonzero normal force at 30Hz excitation.
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Fig. 3.10 Stick-slip response with nonzero normal force at 30Hz excitation.
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3.4 Testing in the DLR Transonic Wind Tunnel

Albeit complex, the friction device/actuator system combination worked perfectly

as designed and led, for the first time, to the generation and recording in the DLR wind

tunnel of transonic limit cycles with active internal friction at Mach numbers close to 0.6.

The first important observation to be drawn is that such experimental analyses are

possible and that internal relative motions can indeed be excited in LCO scenarios.

Some of the recorded LCO are shown in Fig. 3.11 and 3.12. Although only a

limited set of LCO records were obtained, some observations can nevertheless be made.

Consider for example the evolution of the time histories of the response (plunging,

pitching, and torsion) as a function of the Mach number. While the plunging and pitching

time histories show a clean single frequency behavior seemingly independent of the

Mach number, the relative torsion angle displays a much richer behavior. Indeed, for

M= 0.598 and neglecting the high frequency noise, the time history of 0 appears at

first to be almost purely a single frequency solution. A closer inspection however

suggests that the rise of 0 is steeper than its fall, especially near the peak. As the Mach

number is increased, this effect becomes more pronounced and a flattened peak is

obtained for M_ > 0.606, suggesting the possibility of a sticking phase. The lack of

symmetry of this flattening implies a full Fourier series, including even harmonics at the

contrary of the solutions obtained computationally so far.
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Fig. 3.11, continued
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Fig. 3.12 Zoomed time histories of the plunging displacement ("heave"), the pitching
angle ("alpha"), and the relative torsional angle (" alWD") recorded in the DLR wind

tunnel for a normal force of 21 N.
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Fig. 3.13 Time histories of the plunging displacement ("heave"), the pitching angle
("alpha"), and the relative torsional angle ("IalWD"I) recorded in the DLR wind

tunnel for M. = 0.608.
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Fig. 3.13, continued

What about the effects of the normal force? Shown in Fig. 3.13(a) and (b) are the

time histories of the three variables for a Mach number of 0.608 and a normal force of

50N, as opposed to the 21N used in Fig. 3.11(f) and 3.12(f). A comparison of the time

histories of the 21N and 50N is given in Fig. 3.13(b) from which it is concluded that the

increase in normal force has led to a decrease of the torsional response and,

correspondingly, to a small increase in the plunging and pitching amplitudes. The small

changes that are involved in Fig. 3.13(b) ought to be confirmed as genuine and not the

result of noise or variability. To this end, several cases were repeated to provide a

baseline for the assessment of the noise and variability. In fact, a repeat measurement of

the LCO for M., = 0.608 and a 50N normal force is available and the two sets of time

histories are plotted in Fig. 3.13(c). It is clear from this figure that the repeatability is
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high so that small differences, such as those noted in Fig. 3.13(b) can indeed be

interpreted as genuine changes in the response.

In closing this chapter, it should be noted that the flutter speed of the system in

stuck mode was found to be higher than M., 0.608 in an earlier set of tests. In fact, it

was necessary to excite the airfoil by a shaker during the tests to obtain the LCO

measurements of Figs 3.11-3.13. It is thus concluded from these two observations that the

results presented are of a subcritical nature.



CHAPTER 4

CONCLUSIONS

The focus of this thesis has been on the assessment of the effects of internal

friction on the response of aeroelastic systems exhibiting either explosive flutter or limit

cycle oscillations. In the first part of this work, a two-degree-of-freedom system has been

extensively studied that models a wing with an internal, sliding component. The largest

mass of the system represents the wing while the smallest one is associated with the

sliding component. A dashpot of negative constant was introduced to model the unstable

linear aerodynamic effects, while an additional van der Pol restoring force was included

to characterize possible stable nonlinear aerodynamic effects. Both of these components

were assumed to act only on the largest mass (wing). The sliding mass was finally

assumed to be connected to the wing through a friction slider, a spring (k1 > 0), and

possibly a dashpot (positive viscous damping, c1 __ 0).

The system was analyzed first without a van der Pol term. Further, in the absence

of elastic deformation during sliding, i.e. for k1 = 0, it was shown that an exact

procedure can be followed to transform the nonlinear equations of motion into a set of

nonlinear algebraic equations and that a stabilization of the unstable aerodynamic forces

was possible. The most negative damping that could be stabilized in this configuration

was in fact shown to be 2 r/t2 (for r << 1) where r denotes the ratio of the two masses

of the system. The system was found to exhibit periodic motions with possible stick

phases. The introduction of a nonzero spring constant was shown to lead to an increased

stabilization potential that is maximum in a "tuned damper" configuration, i.e. when the

natural frequency of the primary component (the wing alone) closely matches the natural
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frequency of the secondary alone (sliding mass on spring k1). In addition to this benefit,

a broader set of motions was also observed. Besides periodic (referred to as single

frequency here) solutions, multiple frequency motions were also found to exist,

especially near the tuned damper configuration while the single frequency solutions were

typically obtained near the stability border. Both continuous slip and stick slip multiple

frequency motions were noted which were shown to be either aperiodic or chaotic.

Further, the transition from single to multiple frequency was shown to be a Hopf

bifurcation. It was finally observed that the maximum steady state response of the wing is

typically minimum for the single frequency motions occurring just next to the

bifurcation. A sharp increase in response level is obtained after bifurcation that results

from the beating induced by the presence of multiple frequencies.

The inclusion of a van der Pol term did not significantly change the above

findings with the noted exception that the system is always stable even in the absence of

friction in which case it experiences a continuous slip single frequency motion. In fact, it

was observed that the van der Pol term leads to a significant reduction of the large

amplitude beating excursions obtained otherwise in connection with multiple frequency

solutions and appears to postpone the Hopf bifurcation. In regards to stick slip vs.

continuous slip, the decrease in response implied by the presence of the van der Pol term

was found to increase the likelihood of stick slip motions which typically occur at lower

response levels than continuous slip solutions do. The effects of the coefficients of

friction (the static and dynamic coefficients were assumed equal here) was studied next.

It was first noted that the amplitude of continuous slip motions (single or multiple
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frequency) is linearly scaled by the coefficient of friction and this parameter plays no

further role in these cases. When stick phases occur, a more complex dependency on the

coefficient of friction is obtained. Next, it was found that 2 stable solutions can be

obtained for low coefficients of friction. One such solution has a low amplitude and is

dominated by friction effects alone with little influence of the van der Pol term. The

reverse statement holds for the other solution, the amplitude is large with the stabilization

dictated by the van der Pol force with little effect of friction. As the coefficient of friction

increases, these two solutions become closer together and eventually merge. The

amplitude of response then appears to increase monotonically with further increases of

the coefficient of friction. The effects of a second, viscous damper in parallel to the

friction element was finally considered. It was found that the two damping mechanisms

do not necessarily reinforce each other and that the friction hinders the viscous

dissipation when stick occurs. In fact, nonzero amplitude limit cycle oscillations were

noted with friction in situations where the equilibrium (zero response) would in fact be

stable without friction.

The second part of the thesis focused on the design, fabrication, and testing of an

actual friction device on an airfoil. The basic design of the system is a rotating disk

connected to the airfoil by a torsional spring of natural frequency closely matching that of

the airfoil to achieve the tuned damper arrangement discussed above. The spring was

instrumented with strain gauges to measure the angle of torsion of the system. Finally, a

complex system was designed to produce the required normal force to induce friction on

the moving airfoil without transmitting any shear or moment. The preliminary testing of
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the system was accomplished in shaker tests conducted in the ASU Vibrations

Laboratory. The system was shown to exhibit the basic motions expected, i.e. continuous

slip and stick slip responses. The friction device was then installed on a NLR 7301 airfoil

in the DLR transonic wind tunnel operating at a Mach number near 0.6. Subcritical limit

cycle oscillations were observed in which the friction played a significant role. The

limited data obtained demonstrates a slight decrease in response by increasing the normal

force applied, i.e. by increasing the level of friction.
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ABSTRACT

The appearance of limit cycle oscillations in aeroelastic systems has usually

been associated with nonlinearity in the aerodynamics and/or in the structural restoring

forces. It has, however, been recently suggested that nonlinearity in the damping

mechanism, more notably friction between a small moving part (or many such parts such

as stores and missiles) and the wing, may indeed be a source of post-flutter limit cycle

oscillations. The present work provides a numerical validation of this expectation by

studying the response at and above flutter of a flat plate and a NACA0012 airfoil both

exhibiting an internal friction mechanism and placed in a inviscid and incompressible

flow.

The aerodynamic of the flat plate, dictated by the Theodorsen function, is linear

and thus the frictionless system is either stable or flutters. Time marching computations

were carried out with a rational approximation of the Theodorsen function on the system

with an internal friction component. These results demonstrate the existence of a rich

collection of limit cycle oscillations in a range of flow speeds extending above the flutter

speed of the flat plate with its frictional device stuck by about 3% for a device whose

inertia is 5% of the inertia of the flat plate. This significant increase in stability zone

demonstrates the good potential stabilization of friction.

The second airfoil, a NACA0012 section also placed in an inviscid,

incompressible flow, had been found in earlier studies to exhibit limit cycle oscillations at

and slightly above its flutter speed. The inclusion of a friction device is once again seen

to be beneficial as significant reductions of the amplitude of the limit cycles (e.g. by a

factor of 3) can be obtained by appropriately "tuning" the friction device.

o~Iil



The nature, i.e. periodic, aperiodic, chaotic and continuous vs. stick slip, and

magnitude of all limit cycle oscillations encountered are discussed in details.

iv
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CHAPTER 1

INTRODUCTION

Limit Cycle Oscillations (LCO) have been a prevalent aeroelastic problem on

several current fighter aircraft. This phenomenon usually occurs for aircraft with external

stores throughout, but not limited to, the transonic flight regime' 2 , although a business jet

wing LCO was also reported recently3. Complicated by the problem geometry, e.g. the

aircraft-store system, the LCO mechanisms still remain to be fully understood. In fact,

there exist few analytical techniques available for LCO prediction and an insufficient

understanding of its physics.

With aerodynamic feedback, LCO are sustained periodic oscillations which

neither increase nor decrease in amplitude over time for a given flight condition. A series

of researchers, notably Cunningham and Meijer4, believe that the wing/store LCO is a

purely aerodynamics phenomenon, largely due to transonic shock oscillation and shock

induced flow separation. This LCO scenario, which is referred to as the Transonic

Shock/Separation (TSS) model, has been suggested by Edwards to be, with viscous

3effects, one of the major factors contributing to transonic LCO for wings3.

In 1998, Chen, Sarhaddi and Liu2 offered a radically different LCO model based

on the observation that wing/store LCO can be a post-flutter phenomenon whenever the

flutter mode contains low unstable damping. This type of flutter mode is called a "hump
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mode". Since the aircraft structure usually exhibits some structural nonlinearity, such as

friction, free-play, etc., the moderate growth of amplitudes corresponding to the low

negative aerodynamic damping may be suppressed. The result is then a steady state

oscillation. The consideration of friction in wing/wing-store LCO studies is rather

recent5 . Here it is referred to as the nonlinear structural damping (NSD) model of the

wing/store LCO.

It should be noted that the consideration of friction in flutter analyses is not new,

as it is recognized in the turbomachinery community that the friction at the blade root and

in shrouds plays a definite stabilizing role. In fact, this observation has led to the use of

specially designed friction-based damping systems, referred to as "underplatform"

dampers, to damp blade vibrations and increase the flutter speed (e.g. see Ref. 6 and 7).

Notwithstanding these similarities, there are substantial differences in the

aerodynamic/structure interactions in wing/wing-store LCO and in the turbomachinery

blade flutter that render each problem specific.

In light of the above discussion the focus of the present investigation and of a

companion one, Ref. 8, is on providing a validation of the potential of friction to stabilize

an unstable aerodynamics and/or affect the magnitude of existing limit cycle oscillation.

The purely structural dynamic set up of Fig. 1.1 was a adopted in Ref. 8 as a

simple model of an aeroelastic system near/above flutter; the damping coefficient c was

taken negative to simulate small amplitude unstable aerodynamic effects and a van der

Pol restoring force could be included to represent a potential stabilization of aerodynamic
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origin. In this fashion, the effects of friction could be assessed on purely fluttering

systems (without the van der Pol term) and those exhibiting aero-driven limit cycles (with

van der Pol term). In fact, a comprehensive quantitative analysis of this system was

achieved, most notably the stabilization potential of friction was substantiated, and the

effects of the various parameters clearly described.

i xz

v.d.p ••

Fig. 1.1 2-degree-of-freedom system with van der Pol (v.d.p) force

The second part of Ref. 8 described the design of an actual friction device and

reported the results of wind tunnel tests conducted in the DLR transonic wind tunnel.

Some of the finding of this experimental effort confirmed the analysis conducted on the

system of Fig. 1. 1 while others were unexpected.

In this light, the specific goal of the present investigation is to parallel the analysis

of Ref. 8, but on actual aeroelastic systems as opposed to the structural dynamic model of

Fig 1. 1, and thus to bridge the two components of this earlier study.

In selecting an appropriate structural model for a full aeroelastic analysis, it is first

necessary to describe in details how friction will be introduced. The representation of the

friction effects is particularly challenging as it is expected that many joints (e.g. between



4

wing and pylons, between riveted panels, between bolted pieces of spars, ribs, etc.) would

likely participate in the damping effects. However, the modeling of these different

contacts would not only be a tremendous task but its complexity would render it

extremely difficult to determine the role of friction in LCO. To obtain such results, it is

suggested to proceed with the following structural simplifications and the aerodynamic

modeling that follows.

(i) The friction effects will be assumed to originate from a single, rigid

component moving relatively with respect to the wing and to be characterized by a

preload N or applied moment Mo and coefficients of friction us and utD.

(ii) The changes of structural geometry that occur due to the relative sliding at

the joints will be neglected. This assumption appears justified as all aircraft components

are subjected to a large preload so that a large amount of energy can be dissipated with

only small relative motions at the joints. Accordingly, there will be no effect of the

sliding on the aerodynamics.

Combining the above two assumptions suggests that the friction mechanism

should appear internal to the wing, e.g. modeled through a block sliding inside the

structure in a rough track (Fig. 1.2) or through a rigid component experiencing rubbing

while rotating, e.g. as a rotating disk squeezed between two stationary rings (Fig. 1.3 and

Fig. 1.4).
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Fig. 1.2 Aeroelastic system with sliding block

Torsional friction
device

Fig. 1.3 Aeroelastic system with rotating disk

Rigid Disk

Outside
Friction

Ring

Inside
Friction

Ring

ToF

Fig. 1.4 Exploded view of the torsional friction device8
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Both of these models will be used in the ensuing chapters to assess the role of

friction on aeroelastic systems exhibiting either a pure fluttering behavior (chapter 2) or

post flutter limit cycle oscillations (chapter 3). In both cases, an inviscid incompressible

aerodynamics is assumed and fully coupled aerodynamic/structural dynamic

computations are performed.

It should be noted that these models are meant to be generic, i.e. that their

equations of motion may be considered representative, albeit possibly simplified, of the

equations of motion of a physical wing/wing-store system expressed in modal

coordinates as opposed to the physical coordinates used here. A one to one

correspondence between the properties (mass or inertia, stiffness.) of the friction

device and of a physical component (store or missile for example) is not suggested here.



CHAPTER. 2

FLAT PLATE WITH INTERNAL FRICTION

As a finrst step forward understanding the effect of friction on aeroelastic system,

the simplest airfoil, i.e. a flat plate, will be considered that supports a torsional friction

device, see Fig. 1.3 and 1.4. The system is thus characterized by the three degrees of

freedom: plunging, h, (positive downward measured at the elastic axis), pitching about

the elastic axis, a•, (positive nose-up) and torsion 0 (positive clock-wise).

Mean
position

SAxis , ,

I ! II

I~ Ii

Fig. 2.1 Flat Plate airfoil having three degrees of freedom

The equations of motion for the above system are

Mh + S r+ khh = L(t) (2-1)
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Sgh + I/ + ka + kd (a- 0) = Ma (t) + Mf (2-2)

IdO+kd(O-a) = -Mf (2-3)

where M is the total mass of the system, Sa is the static moment of the flat plate about

elastic axis, 1a is the moment of inertia of the flat-plate about elastic axis and Id is the

moment of inertia of the torsional disk. The symbols kh, ka and kd denote the spring

constants of the plunging, pitching, and torsional motions, respectively. Further, U is the

free stream velocity and b is the half chord. In regards to forces, L and Ma denote the lift

(positive downward) and moment (positive nose-up) respectively, and Mf is the friction

moment resulting from the squeezing of the rotating disk by the two rings, see Fig 1.4.

This moment can be expressed as

Mf =PD MOsgn( -e) during slip (9 d) (2-4a)

and Mff _u< M0 during stick ( 6=) (2-4b)

where .uDMO is the moment created by the friction induced shear stresses. If one assumes

a uniform stress distribution at the disk ring contact, then it is found that

I 3[R' - R7 ] where N is the normal force between the disk and the ring and R,

and R, are the internal and external radii of the rings. Finally, uD and 4us are the

dynamic and static coefficients of friction, respectively.

Introducing the dimensionless time r = Ut /b in Eq. (2-1), (2-2) and (2-3) yields
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U
2  U

2

M- 7 h" +S -a" +khh=-L(r) (2-5)

u2 U2
Sa -4h" +I I - ""+k,,a+kd(a-o) =M,,M(r)+Mf (2-6)

i I U k cA--

d b2 a+kd\( - f)=-Mf (2-7)

where (.) denotes the differentiation with respect to r.

It will be assumed here that the aerodynamics can be assumed as inviscid and

incompressible. The resulting aeroelastic system is then linear in the absence of friction

and its corresponding response can be sought by standard Fourier transfer function

concepts. Specifically, expressing the airfoil motions as

h:) =hoe~ (2-8a)

and

a(r) = aoeik' (2-8b)

where the reduced frequency k is defined as

wb
k=- (2-9)

U

then, it can be shown that the lift and moment may be expressed as 9 :

L(r)eikr = k2(h -ahcO) +ika + + (1-kb
-~bU b k( ha)+i + 2C(k)[ao + b kho + 2ah)ikaoj (2-10)
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M(r)eikt 1I ii-= (-+ah)2C(k)Ica +-ýkk + (--ah)ikao!
p~irb 2u 2  2 L b, 2 j0

2 1 k 2
-k ah (--ahao) -(---ah)ikao +--Co (2-11)

b 2 80 -- 0 (-1

In the above equations, C(k) denotes the Theodorsen function9"0 simulating the

unsteadiness of the wake and expressed as

Hl2) (k) K1 (ik) (2-12)C~)=H121(k) + iW11) (k) Ko (ik) + K, (ik)

where Hj.2) (.) and Kj (.) denote the Hankel function of the second kind and modified

Bessel function both of orderj, respectively.

Adopting a rational approximation of this function permits the reformulation of

Eq. (2-10) and (2-11) in terms of ordinary differential equations which can be marched in

time with Eq. (2-5), (2-6) and (2-7) to obtain the response of the coupled aeroelastic

system both without (linear analysis) or with (nonlinear analysis) friction. Specifically,

the following approximation of C(k) is used in the ensuing analysis 9"0

C(k) =1 - ik -2 ik (2-13)
ik + s1 ik + s2

where ýj = 0.165, s, = 0.0455, ý2 = 0.335, and s2= 0.3.

A comparison of the real and imaginary parts of the Theodorsen function, Eq. (2-

12), and its rational approximation, Eq. (2-13), is shown in Fig 2.2. Clearly, the matching

is very good so that Eq. (2-13) is appropriate for the present investigation.
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0:06 0,0.4
0.9 [ xact [

0.0..

- 012
0.7.

0.66 . -0.14

0.0 -0,16

0.86 ..!,,.0,10,•

0 0. 1 1.5 2 2. 3 2.0 4 4.5 5 0 06 1 4, 2 26 3 3.5 4 4.5 6
k

a) Real part of Theodorsen function b) Imaginary part of Theodorsen function

Fig. 2.2 Comparison of the exact Theodorsen function, Eq. (2-12), with its

rational approximation, Eq. (2-13)

2.1 Time Marching Computation

The approximation of the Theodorsen function by a rational expression is only the

first step in rewriting Eq. (2-10) and (2-11) in terms of h(z-), a(r-) and their derivatives.

Indeed, note that C(k) does not appear alone in Eq. (2-10) and (2-11) but rather through

the products C(k)Xo where X0 denotes either ho or ao and that there variables are,

from Eq. (2-5), the Fourier transform of h(z-) and a(r), i.e.

ho =ho (k) = F{h(r)} ; ao = ao(k) = F{a(r)} (2-14)

Since there are three terms on the right-hand-side of Eq. (2-13), one can write

C(k)Xo F{T (r) + Ti÷, (r) + T+2 (r)} (2-15)
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where T7(z-) arise from the one in Eq. (2-13) while T7,,(r) and T7÷2(r) are associated

with the two rational terms in this equation. The application of standard rules of Fourier

transformations demonstrates that

T7 = X(r) (2-16a)

Till Till +,' +sTill =-ýX' (2-16b)

T+2 :T+2 +s 27T.2 =-ý2X' (2-16c)

There are thus four auxiliary functions of time, T (r) and T2 (r) obtained for i=0

and X(r) = h(r) and T3 (r) and T4 (r) corresponding to i=2 and X(r) = a(r).

Other noteworthy Fourier transform properties are

ikC(k)Xo =F{IT+ T,. + T.+2} (2-17a)

ikX0 =F{X'} (2-17b)

and

k2X0 =F{-X"} (2-17c)

Combining Eq. (2-5), (2-6), (2-7), and (2-15) finally yields the equations of motion in the

form

S 3 +1h"+ S -a"-a'-2(a+=- T3-2(a+T+T4))-b(h'+T2'+T2)

pprb b ,prb b

-(1- 2a)(a'+ T+ T4') - h(21p8bU)
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S3-alh"+( 3 +ba,2 + b)at= b(1+2ah)(a+T 3 +T4)+(1+2ah)(h'+7T'+T21 )
pifb3  ahJ+prb3 8

2)(a' + T3+ T,_ -1 •.l - a )a'-k. •a- d 2 (a-0 + _

b(2 2,2 h p~rb U2  pibpbU

(2-19)

and

Id b70 + kd (0- a) =-Mf (2-20)

which must be solved together with Eq. (2-16). Note during stick phases that 0 and a

are not independent variables since d = . Equation (2-20) then permits the evaluation of

Mf.

The ensuing numerical study was conducted at various speeds U and for different

spring stiffnesses kd. The other system parameter values are shown in Table 2.1.
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parameter Explanation Value

M Total mass of the airfoil system 20.0 kg/m

Static moment of airfoil about the
S. 2 kg

elastic axis

Moment of inertia of airfoil aboutI 1.1875 kgmthe elastic axis

Id Moment of inertia of torsional disk 0.0625 kgm

Spring constant of plunging 1. /r 2

direction

Spring constant of pitchingka 1.25N

direction

b Semichord 0.5m

Nondimensional distance from the
ah -0.1

midchord to the elastic axis

Ps (/1) Static coefficient of friction 0.001

PD (P) Dynamic coefficient of friction 0.001

P Density of air 1.27324kg / m3

MO Moment term in Eq. (2.4) 1

Table 2.1 System parameter values for the flat plate
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2.2 Linear solutions continuous sticking and frictionless slipping behaviors

Equation (2-16) and (2-18) through (2-20) represent three first order (two during

sticking since 0 and a are then related variables) and four first order equation. These

equations can be rewritten as a set of 10 first order equation in slipping motions and 8

such equations in sticking phases. These equations are in general nonlinear but there are

two linear limiting cases. If the motions are such that sticking occurs continuously (for

example in the limits u -4 co or kd -> oo), the friction nonlinearity is not triggered and

the equations of motion are linear. This sticking solution will serve as the baseline in the

ensuing analysis as it corresponds to the system without moving parts.

The second linear solution corresponds to the continuous slipping motions

occurring with u =/. =-s = 0. In this case indeed, the nonlinear moment Mf always

vanishes.

The complexity of the solutions with active friction warrants the detailed analysis

of all simple cases first. In this regard, note that the equations of motion for both of the

above linear problems (continuous sticking and frictionless slipping) can be rewritten as

y+Ay =0 (2-21)

where the vector y has the 10 components h, /, a, 0, 9, T, T, T2, T3 and T4 for the

frictionless slipping problem and only the 8 components h, h, a, &i, T, T, T3 and T,

for the continuous sticking solution. Since Eq. (2-21) is linear, no LCO is possible : the

response y(t) either converges to 0 or diverges independently of the initial conditions.
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The convergence (stability) or divergence (instability) of y(t) is determined by the

eigenvalues 2j of the matrix A. Specifically,

the system is stable, i.e. y(t) converges to 0 iff the real parts of all eigenvalues

AJ are >0.

the system is unstable, i.e. y(t) diverges iff the real parts of any eigenvalue 2j is
mJ

<0.

It is convenient to analyze the response of the two linear cases in terms of natural

frequencies and damping ratios. This is achieved by associating to each eigenvalue 2i a

natural frequency coj and a damping ratio ;j' through the linear single-degree-of-freedom

relation

-2j. =-.-0 +_ ieo, 1• (2-22)

or

cw, =1ki (2-23)

and

Re(21 ) (2-24)

Stability then occurs when all 'j are positive and instability when any of them is

negative.
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This stability analysis revealed some interesting information, most notably that

the system in frictionless slipping mode with the parameter values in Table 2.1 is less

stable than its continuous sticking counterpart in that it exhibits its first negative damping

ratio at a lower flow speed. For example, the first negative damping ratio arises at

approximately U=0.74 m/s (continuous slip) and U=0.995 m/s (continuous stick) for kd

0.0165 Nm/rad but they occur at U=0.99208 m/s (continuous slip) and U=0.99232m/s

(continuous stick) for kd = 0.985 Nm/rad. It must, however, be recognized that there are

several significant differences in the evolution of the dimensionless natural frequencies

(made dimensionless by the time ) and damping ratios corresponding to these two
U

values of kd. For the larger one, see Fig. 2.3, classical flutter situations are encountered,

two modes of each aeroelastic system (stuck and slipping) appear to cross as the smallest

damping ratio becomes negative. Further, note that the natural frequencies and damping

ratios of the sticking and slipping systems are very close to each other over the entire

range of flow speeds.
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Fig. 2.3 Dimensionless natural frequencies and damping ratios of the

frictionless slipping ("sl") and continuous sticking ("st") systems as functions of the

flow speed, kd =0.985Nm/rad.

For the smaller value of kd, the natural frequency of the torsional device alone is

the middle frequency (as opposed to the largest one in Fig. 2.3) and its presence affects

much more significantly the response of the frictionless slipping system. This system

becomes first unstable at a flow speed of approximately 0.74m/s but this does not occur

with a mode veering/crossing, see Fig. 2.4. In fact, such a situation does not take place

until the speed reaches 0.995m/s. Classical flutter instabilities do take place for both the
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continuous sticking and frictionless slipping systems around U = lm/s, see Fig. 2.5, with

the sticking system instability speed lower than its slipping counterpart.
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Fig. 2.4 Dimensionless natural frequencies and damping ratios as functions

of the flow speed, kd =0.0165 Nm/rad.

The above comments demonstrate that there is, for both torsional spring

stiffnesses, a range of flow speeds for which the continuously sticking system is stable

while the one in frictionless slip mode is unstable. Thus, if a disturbance is applied that

does not induce a relative motion of the disk with respect to the plate, the response of the

system will decay. On the contrary, a disturbance that includes such a relative motion

may increase unless the system gets stuck again. These observations imply that the

system of Fig. 2.1 might exhibit subcritical, as well as supercritical, limit cycle

oscillations.
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A tentative explanation of the lower flow speed at which instability takes place

for the frictionless slipping system as compared to its continuously sticking counterpart is

as follows. Note first that the stuck configuration (two degree of freedom) can be viewed

as the limit of the slipping one (three degree of freedom) in which the connecting

stiffness of the device kad ->oo. Accordingly, the two natural frequencies of the stuck

configuration will be higher than the two lowest natural frequencies of the slipping

system. Since the slipping is directly coupled to the pitching dominated motions not to

their plunging counterparts, it is expected that the above effect would be more significant

on the pitching frequency than on the plunging one and the former would thus be

decreased by allowing relative motion of the disk.

How does this change in natural frequency affect the flutter speed? If one relies

on the veering of the natural frequencies at flutter, it is predicted that the highest natural

frequency of the coupled aerodynamic-structural system decreases while the lowest one

increases as the flow speed is increased toward the flutter point. For the system analyzed,

the pitching frequency is the highest at zero flow speed and thus a decrease of it, through

allowing slipping, may result in a lowering of the flutter speed. This explanation is

particularly consistent with the behavior observed for kd = 0.985 Nm/rad.

The above discussion is the characterization of the system behavior in linear

frictionless slipping and continuous sticking phases and provides the background for the

analysis of the effects of the nonlinear friction force to be accomplished next.
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2.3 Nonlinear Responses

An important aspect of the numerical integration of the governing equation is the

accurate capturing of the times at which a zero relative speed, - d 0 , is achieved. It is

indeed at those moments that the force of friction abruptly changes sign (in the case of

continuously slipping motions) but also that slip to stick transition could occur. The

appropriate determination of the stick to slip transitions is also important.

An interpolation by cubic and linear polynomials which was adopted in the

ensuing computations is presented next.

2.3.1 Transition Handling

If a transition was found to take place during a time step (i.e. a change of sign of

the relative velocity or the friction force exceeding the sticking threshold), the time

to E[ti, t,-+] at which it occurred was estimated by interpolation of the relative velocity

(using a cubic polynomial) or the friction moment (linear interpolation).

When a transition (slip to slip, slip to stick, stick to slip) occurs during the time

step t E [ti, ti, ], the estimate of the response cannot be obtained directly from a shooting

of the solution at t = t, because the friction force definition and the equations of motion

would only be valid before the transition takes place. The neglect of the change of

character during the time step would produce an error O(At) and thus would force the

selection of a very small time step At. To avoid this situation, it is proposed here to first

march the solution through the entire time step as if no transition took place, then to
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estimate the transition point (time to) within the time step, and finally to recompute the

response at the end of the time step assuming the correct state in the interval [to, ti ,

Consider first slip to slip or slip to stick transitions. The transition condition, i.e.

the vanishing of the relative velocity, is based on the response variables which are

continuously differentiable. Thus, the relative displacement, x(t), can be approximated by

a cubic polynomial of time in the interval [t, tij, i.e.,

x(t)= x +aT+ bT +cT3  (2-25)

and

(t)= a + 2b7 + 3c7-2  (2-26)

where t =t-ti and xo =x(t,).

The constants a, b, and c are evaluated from the values of the relative

displacements and velocities at the beginning and end of the time step assuming that no

transition takes place. Specifically, when t=0 and t-= At

x(t,+,) = x, = x. + aAt + bAt2 + cAt 3  (2-27a)

i(t) = vo = a (2-27b)

.*(tQ5 ) = v, = a + 2bAt + 3cAt 2  (2-27c)

Equation (2-27b) yields the value of a, while Eq. (2-27a) and (2-27c) lead to the

values of the remaining coefficients as

b t - (2-28a)At
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C = -(2-28b)
At 2

where = v1 -vo and

X1 X0 -a=y (2-28c)
At

On the basis of the cubic interpolation, it is possible to estimate the transition

time. Specifically, from

i(t 0)=v 0 +2bT0+3c&t0 =0 (2-29a)

it is found that

S-b_,ba -3Voc
-o 3c (2-29b)

3c

Stick to slip transitions are governed by the value of the force of friction of which

only the value is known (no derivative). It will thus be assumed that the force of friction

is linear during the interval or

At (2.30)

where F, and F2 are the values of the force of friction at the beginning and end of the

time step assuming that no transition took place. The transition occurs when F reaches its

threshold value of ±+usN so that

*0=I NF-f IAt (2.31)
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Once the transition time has been estimated from Eq. (2-29) or (2-31), cubic

interpolations of h(t), a(t) and 0(t) are carried out and evaluated at the appropriate to

to yield approximate values of the response at the transition.

The structural computations are then repeated in the interval t e [t0, tj÷] with the

correct state (stick or slip).

2.3.2 Time Marching Numerical Result

Based on the analysis of Agelastos8, it was of particular interest to determine the

type of response (single vs. multiple frequency, continuous slip vs. stick slip vs.

continuous stick) and the largest steady state responses, both as functions of the two

fundamental parameters: the flow speed U which dictates the level of instability in the

system and the spring stiffness kd which controls the transfer of energy from the plate to

the friction device. The behavior above both continuous sticking and frictionless slipping

flutter speeds was investigated first, and Fig. 2.5 through 2.8 show some typical examples

of observed responses.

The simplest motions are characterized by a single frequency (SF) and continuous

slip (CS), or SFCS for short. The term single frequency (see Ref. 8) refers here to a

solution that exhibits a single fundamental harmonic, these motions are thus periodic as

can be seen from the phase plane plot of Fig 2.5(d) and its sampled version of Fig. 2.5(e).

Single dots in this latter figure indicate that the crossing of the zero relative velocity

always occurs in the same conditions. Stick slip periodic solutions are also possible and
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are denoted as SFSS (single frequency stick slip), see Fig. 2.6. The presence of the stick

phases is best seen in the plots of the pitching and torsion velocities, see Fig. 2.6(c); they

correspond to the intervals during which these two velocities are equal.

Multiple frequency solutions are those that involve at least two frequencies which

are not rational with respect to each other. The resulting motions are thus non-periodic

and exhibit a beating as seen in Fig 2.7 (continuous slip) and 2.8 (stick slip). As might be

expected, the phase plane plots of these multiple frequency (non-periodic) motions are

much more complex than those of the periodic solutions. In fact, the MFSS solution of

Fig 2.8 appears from Fig. 2.8(e) to be aperiodic which its MFCS counterpart would seem

to be chaotic, see Fig. 2.7(e).

A global overview of the response of the system can be obtained by analyzing the

two most essential features of the motions, i.e. the type of solution (MFSS, MFCS, SFCS,

SFSS) and the magnitude of the response, as functions of the two critical parameters U

and kd. The concept of magnitude is not clearly defined for multiple frequency solutions,

the largest noted response in the computed steady state domain will be used instead. This

value is referred to as the largest response and reduces to the amplitude of response for

periodic motions. The characteristics of the response and its largest value are shown vs.

U and kd in Fig. 2.9(a) and 2.9(b).

There figures exhibit many of the features presented in Ref. 8 Indeed, it is seen

that the largest speed at which a stable solution exists is obtained for an intermediate

value of the spring stiffness kd (around 0.0165 Nm/rad), that a transition from single to
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multiple frequency solutions occurs at a fixed speed as the spring stiffness kd is

increased, and that both continuous slip and stick slip solutions are encountered.

Considering next the largest pitching response, it is seen in particular that the

response level decreases first monotonically as a function of the spring stiffness until the

transition from single to multiple frequency is encountered. For larger values of kd, the

response exhibits beating which implies the very sharp increase of the largest response

seen in Fig. 2.9(b) near kd= 0.0157 Nmrrad.

There are a few differences as well between Fig. 2.9 and their counterparts of Ref.

8. In particular, Fig. 2.9(a) and 2.9(b) do not exhibit the symmetry with respect to the

peak stabilization point (kd, 0.0165 Nm/rad) that is observed in Ref. 8.

It was also questioned whether the "tuned damper" explanation developed in Ref.

8 in connection with the system of Fig. 1.1 could also be used to justify the maximum

stabilization that occurs near kd = 0.0165 Nmrrad. An analysis of the natural frequencies

of the system in slip mode revealed that they were indeed close to each other but with

20% difference between the third natural frequency and the two that are veering/crossing.

This difference is too large for the tuned damper arguments to be the sole justification for

the optimality of kd= 0.0165 Nm/rad but it is small enough for these arguments to be

considered as the basis for this property.

It was next desired to investigate the behavior of the response in situations where

the stuck system is stable while its slipping counterpart is unstable. The analysis of the
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corresponding response types and largest responses was achieved first around kd 0.985

Nm/rad. It was found that limit cycle oscillations do occur in the small range of flow

speeds U E [0.922, 0.923] m/s, i.e. from the flutter speed in slip mode to slightly above

the flutter speed in stick mode. All finite amplitude limit cycle oscillations found were

multiple frequency stick-slip solutions with largest pitching response of the order of 0.2,

i.e. approximately twice as large as those seen in Fig. 2.9. The limited zone of flow

speeds at which limit cycle oscillations could be achieved for kd • 0.985 Nm/rad and the

larger response they are associated with, both as compared to kd 0.0 165 Nm/rad, appear

to reinforce the, approximate, validity of the tuned damper assumption as the third natural

frequency in slip for klcd 0.985 Nm/rad is far from the other two, approximately 7 times

larger.
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The search for subcritical limit cycle oscillation, i.e. occurring at speeds lower

than the flutter speed of the stuck system, was continued for kd =0.016 Nm/rad in the

range U=0.72 to 1.01m/s. In fact, it was found that an unstable LCO does exit for

U < Ust,,ck and this solution is a separatrix, i.e. it separates the motions decaying to zero

from those rapidly growing to infinity. In general, the instability of this separatrix renders

its numerical estimation very difficult. It was nevertheless estimated here by varying the

magnitude of the initial condition until a very slow decay (at first, at least) was obtained,

the system response during that phase then clearly approximates the unstable LCO. On

that basis, it was observed that the motions on the separatrix would be characterized as

single frequency continuous slip.

For speeds larger than the flutter speed of the stuck system, stable single

frequency LCOs were obtained for U in the range [0.72, 1.013]. For larger values of U,

multiple frequency solutions were observed, see Fig. 2.9. Both stable and unstable LCOs

pitching amplitudes are shown in Fig. 2.10. While the presence of the separatrix was not

confirmed in the range UE[1, 1.013], it is conjectured that it is present and that the

amplitude of these unstable motions follows the dash line of Fig. 2.10. More specifically,

it is suggested that the separatrix meets the stable single frequency LCO branch at the

flow speed where this solution become unstable as indicated in Fig. 2.10. The merging of

6,7stable and unstable branches has been observed in a 1.5 degree of freedom model .
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Fig. 2.10 Pitching response as a function of speed, kd =0.0160 Nm/rad

2.3.3 Harmonic Balance Method

The results presented in the previous section have been obtained by marching in

time the system response from a set of initial conditions until steady state. It would be

desirable to have a procedure that allows the determination of the steady state solution

without considering the transient motions. Two such approaches are possible.

An exact approach for the determination of the steady state solution can be

formulated along the lines suggested by Den Hartog" because the system is linear except

for the transition. That is, a set of yet unknown amplitudes are assumed at a time t=0

(conveniently selected as the time at which the relative velocity d- = 0 ) and the
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response is analytically computed for a half-cycle assuming the existence of zero, one,

two.... sticking phases. Then, a periodicity condition is enforced on positions and

velocities. For a continuous slip solution, this process would lead to 10 equations for 10

unknowns constituted of 9 positions and velocities at t=0 and the period. While these

equations are linear in the 9 unknown initial conditions, they are extremely nonlinear

with respect to the period and an iterative approach is necessary.

A simpler but approximate method to obtain the steady state solution is to rely on

the harmonic balance method. This approach rests on the approximation of the response

as a Fourier series of a yet unknown fundamental frequency. Inserting this representation

in the equations of motion and satisfying them to the highest possible harmonic leads to a

set of equations for the unknown fundamental frequency and the Fourier coefficients.

This approach is most reliable when the response is closest to a series of sine and cosine

terms, i.e. in continuous slip situations, and it is only in these situations that it will be

investigated here.

Considering only a single harmonic, the harmonic balance approximation of the

response is

h(t) = A cos kr + B sin kr = Re[(A - iB)e'•] (2-32)

a(t) = Ccos kr +D sinkr = Re[(C-iD)eikr] (2-33)

0(t) - a(t) = E cos kr (2-34)

Note in the above equation that O(t)-a(t) does not contain both sinkr and

cos kr terms. It is indeed allowed to set one of the Fourier coefficients to zero in free
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response problems of time invariant systems. This assumption is in fact equivalent to

imposing t=0 as a time at which the relative velocity vanishes.

Then, from Eq. (2-10) and (2-11) the lift and moment can be expressed as

L=(Lhr + iLhi)(A - iB)eik' + (Lar + L,)(C iD)eikr (2-3"5)

M = (Mhr + iMhi)(A - iB)eflk + (Mar + jM"i)(C - iD)eikr (2-36)

A one term Fourier series approximation of the moment due to friction is obtained as

M4M s(O - a) 0Mo 4/zM° sin wt (2-37)

Substituting the above expressions for all displacements and friction moment into

Eq. (2.5) through (2.7) leads to the following system of equations

0
-A

0
B

H C =4-N. (2-38)7r 1
D

0
1

LE °

where H is the following 6x5 array

"-Mk + kh + Lhr Lhi -Sk 2 + L., L.i 0

-Lh -AMk 2 + kh + Lhr -L.i -Sk 2 + L ,,, 0

H= -Sa k' - Mhr -Mhi -I,,hk' + k•, - M.,, -M•, -kd
Mhi -Sak' - Mhr M• -Iak2 + k. - Mar 0

0 0 -Idk2 0 kd - Idk2

0 0 0 Idk2 0

(2-39)

Proceeding with linear combination of rows, it is possible to rewrite Eq. (2-39) as
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0A
0

Bg =4,uN 0
H C (2-40)

r 0
D

0
E

L J

where H is obtained from the matrix H by replacing its fourth row by the difference

between fourth and sixth row.

The determination of the 6 unknowns A, B, C, D, E and k satisfying the 6

equations of Eq. (2-36) is easily achieved by first partitioning the matrix H as

(2-41)

where Hi is 5x5 and H 2 is a five component row vector. Then, introducing

r= [A B C D E], it is seen that Eq. (2-41) is equivalent to

H1 q =0 (2-42)

and

-2 =4(2-43)

It is then concluded that fl must be singular, i.e. that the fundamental frequency k

must be determined so that det( H )=0. Once this is achieved, the vector V' containing the

Fourier components of the response is the eigenvector of H1, corresponding to its zero

eigenvalue normalized according to Eq. (2-43). This normalization condition implies that
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the solution pbtained by the harmonic balance linearly scales with the coefficient of

friction. In fact, this result is also valid for the exact solution following arguments

developed in Ref. 8 and it is sufficient to conduct the analysis for a single value of u as

done here.
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Fig. 2.11 Comparison of LCO frequency and pitching amplitude obtained by

time marching (TM) and the harmonic balance method (HBM), kd =0.0155Nm/rad

The above procedure was applied for kd =0.0155 Nm/rad and

UE [1.0145,1.0265] m/s. Shown in Fig. 2.11 are the frequency and amplitudes of

response obtained by both the harmonic balance method and the time marching approach.

Clearly, the matching is excellent for single frequency continuous slip solutions. Figure

2.12 provides a correspondence between the actual time histories for k, =0.0 155 Nm/rad

and U=1.01665mrs obtained by the time marching approach and computed from Eq. (2-32)

through (2-34) with the Fourier coefficients A, B, C, D, E estimated for Eq. (2-42) and (2-

43). This figure demonstrates that the harmonic balance approximation represents well

the solution as a function of time, not only in magnitudes.
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CHAPTER 3

AIRFOIL WITH INTERNAL FRICTION

The previous chapter has focused on the assessment of friction in a system that

does not exhibit a post-flutter behavior in its absence. It is desired next to evaluate the

potential benefits of friction in aeroelastic systems that do exhibit aero-driven cycle

oscillation. The work of Jadic et al.12 has demonstrated that a NACA0012 airfoil in an

incompressible inviscid flow may exhibit LCO behavior in a very narrow zone of speeds

past the flutter point. This example will thus serve here to assess the role of friction in

existing LCO and both the sliding and torsional friction models of Fig. 1.2 and 1.3 will be

investigated. The aerodynamic formulation employed here is identical to the one used by

Jadic et al.12, Yao and Liu,' 3 and Yao et al.' 4"5 and is briefly reviewed below for

completeness.

3.1. Aerodynamic formulation

The flow around the moving airfoil was assumed to be two-dimensional,

unsteady, inviscid and incompressible. Accordingly, the velocity field can be expressed

as

VL= UL + Vb (3-1)

where 0 is a pontential satisfying the Laplace equation

A0 =0 (3-2)
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In addition to verifying Eq. (3-2), the potential 5 must also satisfy the following

boundary conditions

(1) The flow tangency condition

The flow is assumed inviscid and always attached on the surface of the airfoil so

that

(Lo - Ks) n =0 everywhere on the airfoil surface (3-3)

where V_ is the local velocity of the airfoil surface, and V0 is the local flow velocity on

the airfoil, i.e. convection velocity, and n is the local normal to the airfoil surface.

(2) The Kelvin Theorem

The total circulation r(t) of the confined flowfield is conserved

dF
=0 (3-4)

dt

(3) The far field boundary condition

L0 = U. as r -- (3-5)

(4) The unsteady Kutta condition

No pressure jump must take place across the wake at the airfoil trailing edge, or

ACP = 0 at trailing edge (3-6)

(36)
The current method adopts the linearized scheme developed by Kim and Mookt6.

The determination of the potential 0 and velocity field V satisfying the above

equations was achieved through the introduction of source and vorticity distributions on

the surface of the panel represented by high-order elements (cubic spline curved panels
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with continuous slopes and curvatures at the joint points, see Fig 3.1) and of vortices shed

from the trailing edge, see Fig. 3.2. Once shed, the vortices were assumed to convect with

the local flow without dissipating thus forming an unsteady airfoil-free wake system.

While the strengths of the sources were specified by the slope of the airfoil, those

of the vortices on the panel (including the one being shed) were determined at each time

step to satisfy Eq. (3-3) to (3-6). More specifically, the flow tangency condition (3-3) led

to the system of equations

Ay=C (3-7)

where A is the aerodynamic influence coefficient (AIC) matrix for the vorticity

distributions y = [T-A EE ]t. Further, YA is the vector of vorticity strengths on the airfoil

section and FTE is the vortex shed to the wake at time t. Finally, !C denotes the vector of

net induced normal velocities at the control points due to the sources distributions, wake,

vortices, and airfoil motions. Finally, the integration of the pressure on the airfoil results

in the aerodynamic lift and moments, L and M. . Further details concerning this

formulation can be found in Yao and Liut3 and Yao et al.' 4 15.
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3.2 Airfoil with sliding block

3.2.1 Equations of motion

The structural dynamics model used in the present numerical experiment assumes

that the airfoil exhibits only rigid body motion in pitching (rotation) and plunging

(vertical movement). In the absence of friction, the equations of motion of this two-

degree-of-freedom system are

M - Md cos ad + Md sin ad +khh =L (3-8)

IJad - Md cos ah, + k•c = M, (3-9)

where h is the plunging displacement of the airfoil, defined positive upwards, and a is

the pitching displacement of the airfoil, defined positive nose up. The coefficient d is the

distance between the elastic axis and the center of mass, M is the mass of the airfoil

section with a unit spanwise length, I, is the corresponding mass moment of inertia of

the airfoil section. Finally, kh and ka are the modal stiffnesses corresponding to the

plunging and pitching motions, respectively.

When an internal sliding block is present, the equations of motion become

M - Md cos ad + Md sin ad' + khh - sin(0 -aX)(T + kfr) (3-10)
-m cos(O - a) Phcos(O -ca)+ rd• + 2ý - ad 21 L

Mdcosahý-Id-kIaka-a(Tf +kfr) (3-11)

-rm[-h cos(O - a) + rd + 2d - ad'2] = -M.
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for the airfoil, and

msin(O-a)h-mad+mFi-mrd2 +(Tf +kfr) =0 (3-12)

for the sliding block. In these equations, 0 is the fixed angle between the chord line and

the track in which the block slides and a is the shortest distance between the elastic axis

and the track. Further, m is the mass of the block, r(t) is its displacement, and kf is the

stiffness of the spring connecting the block to the airfoil. Finally, Tf is the friction force

between the block and the track. It is defined as

Tf =PDN. sgn(*) when slip occurs (3-13a)

and

ITf j</.N when sticking occurs (3-13b)

where N is the normal force and us and uD are the static and dynamic coefficient of

friction, respectively.

The integration of the equations of motion broadly follows the scheme proposed

by Jadic et al.12 but modified to account for the presence and effects of the sliding block.

That is, during slip phases, Eq. (3-10), (3-11) and (3-12) can be rewritten as

Mlth + khh = F, (3-14a)

M2d + kaa = F2 (3-14b)

miP + kr =F3 (3-14c)
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where

F,=R, 2-~

C3  C3

C 2  C

C, C,

C1 =M+ Mcos 2(9 -a)

C 2 =Md cos a mr cos(O -a)

C3  I,ý + mr 2

R,=-Md sin ad 2 + sin(O -a)(Tf +kf r)

+ m COsO - a)2d- ad') +L

R2 =a(Tf + kfr) + mr(2Zd - ad2) - M,,

During sticking phases, it is not the position of the block which is an independent

variable but rather the force of friction. Specifically, imposing F = = 0 in Eq. (3-12), it is

found that

(Tf + kfr) = -msin(O - a)hi +mdd + mrdc2  (3-15)

and further that

M3h + khh =F 4 (3-16a)
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M 4 d+k~aa=f F(3-16b)

where

M3= C4
C6

M4=C6 C4

FT4=R 3 + C M. C 5 k~a
C6  C6

F;=M

F5 =M, +5C R3 - h-5 kh

C4 =M+m

C5 =Md cos a + mr cos(O- a) + ma sin(O - a)

C6 = I, + mr2 + ma 2

R3 = L - [md sin a + ma cos(O- a) - mr sin(O - a)] d'

3.2.2 Numerical solution of the equations of motion

The numerical implementation of the above structural and aerodynamic models

necessitates the careful handling of the fluid-structure interaction and of the friction

related transitions, i.e. slip to stick, stick to slip and slip to slip.

In regard to the first issue, a full aero-structure feedback was desired and was

accomplished in an iterative manner within each time step of the computations"2 . To
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clarify this strategy, let t, and t,,, denote the beginning and end of the i h time step. Then,

at the first iteration of that time step, an estimate of the structural response at t,,, was

obtained by integrating the structural dynamics equations from t, and t,,, assuming right-

hand-sides of Eq. (3-14) or (3-16) (including the aerodynamic loading) to be constant for

the entire time step and with values obtained from time ti. This estimate of the structural

response was then used to update the boundary conditions for the flow field calculations

which in turn provided an estimate of the aerodynamic loading at ti+. At the second

iteration, these values and their counterparts at t, were combined to yield a linear

interpolation of the right-hand-sides of Eq. (3-14) or (3-16) from which the structural

response at t.+1 was again obtained. The second iteration was completed by the updating

of the aerodynamic loading at tj.1 and a third iteration was then started. The procedure

was continued until a prescribed precision on h, a, and r (10-0 relative error between

successive iterations) was attained. The computation at the next time step was then

initiated and the process repeated until the total time was reached.

The handling of the friction induced transitions was found to fit very naturally

in the above framework and was achieved by the cubic/linear interpolation strategy

described in section 2.3.1.



63

3.2.3 Result of the sliding block study

The analysis of the system of Fig. 1.2 was carried out for m /M = 0.1. Further,

the other system parameters were selected so that the system in sticking mode reduces to

the one considered in Ref. 12. That is, m + M= 20.0 kg/m; I = 1.25 kg m, kh= 1.8 N/mr2

;k = 1.25N, d = 0.1 m, c = 1 m, 0 = 45 deg, and a=0. The equations of motion were

nondimensionalized by using the chord length and the time needed for the flow to pass

through the airfoil. At time t=0, the mass m was assumed to be at the elastic axis of the

airfoil. Thus, if it remained there, the airfoil properties would be identical to those

considered by Jadic et al.12 for which the flutter speed was found to be V. =2.02

(V. = ) and where an LCO naturally occurs. The system was then analyzed from

V= 2.02 to 2.4. Additionally, different stiffhesses of the internal spring were selected

that yielded natural frequencies of the secondary system close to that of the LCO in the

absence of friction, i.e. k = 0.36, 0.72, 1.00, and 1.20 N/rn. For all cases considered,

small initial velocities were given to the pitch and block degrees of freedom (ee = 0.1,

i = 0.1 nondim). Limit cycle oscillations with the movable friction block were noted for

nondimensional velocities up to V. = 2.2.

The analysis of this broad set of data demonstrated the primary existence of

single frequency continuous slip and continuous stick solutions, see Fig. (3.3) and (3.4),

with the stuck solutions occurring at the highest coefficients of friction considered.



64

02

0.1

0'
40 ý10 4201 430 1 50 46'01 470 14ý 0 510

a. -02

-0.3

-0.4-

-0.5

Time
a)

Time history of plunging

0.6

0.4

0.2

g0

CL 4 1) ý10 42 30 440 50 460 7 480 4ý 0 51 0

-0.2

-0.4

-0.6

Time

b)

Time history of pitching



65

0.4

0.3

0.2

0.1

0
40 410 42 3'0 440 40 4q

-0.1I

.0.2

-0.3

-0.4

Time

c)

Time history of the block position

0.2

0.15

0.1

0.05

o 0
4 40 410 4201 43 01 4010 460 470 0O 490 5 0

-0.05

-0.1

-0.15

-0.2

-0.25

time

d) Time history of the relative velocity of the block

Fig. 3-3 Response of the system, pu =0.02, kf =1.2N/m and V=2.2 (SFCS)



66

0.4

0.3

0.2

0.1

4 40 410 ý20 43'0 440 45 60 470 480 4 50

-0.13

-0.3"

.0.4"

nlme

a)

Time history of plunging

0.6

0.4

0.2

0
410 20 4301 4 40 460 470 a 400 5

-0.2

-0.4

-0.6

Mime

b)

Time history of pitching



67

0.09

0.08 L

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0 [ I I

0 10 20 30 40 50 60 70 80 90 100

Time

c)

Time history of the block position

0.12

0.1

0.08

0.06

"9 0.04-

0.02

0
10 20 30 40 50 60 70 80 90 110

-0.02

- 0.04

Time

d)



68

Time history of the relative velocity of the block

Fig. 3.4 Response of the system, /u =0.08, kf =1.2N/m and V=2.2 (Stuck)

The occurrence of LCO's in stuck configurations of the block was not initially

expected and does as not have a counterpart in Ref. 8. This surprising result is due to the

effect of the block location on the inertia of the entire airfoil. Indeed, placing the block

(in a stuck configuration) away from the airfoil elastic axis increases the inertia of the

system, lowers its pitching natural frequency, and increases the flutter speed. That is,

placing the mass away from the center, without any motion or friction, already provides a

stabilization of the system. This simple observation demonstrates that it is very difficult

to assess the bonafide effects of friction on LCO amplitudes for the system of Fig.1.2.

Accordingly, no further discussions of this model will take place and the airfoil with the

torsional friction device of Fig. 1.3 and 1.4 will be considered instead as it does not suffer

from the same issues.

3.3 Airfoil with rotating disk

Denoting by a (t), h(t), and O(t) the time varying pitching and plunging of the

airfoil and the rotation of the internal disk, it is found that the equations of motion of the-

system are (the horizontal translation is assumed to be blocked)

M h-M a cosa & + M a sina e2t+ kh h = L (3.21)

(I- Id)&-Macosa i;+(k,, + kd)c-kdO =M, +Mf (3.22)
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1d O+kd (0-a)=-Mf (3.23)

In these equations, the coefficient a is the distance between the elastic axis and

the center of mass (the distance PG, see Fig. 1.3), M and I are the total mass and

moment of inertia of the airfoil (including the disk), Id is the moment of inertia of the

internal disk, and kh, ka, kd are the stiffnesses in plunging, in pitching, and in torsion of

the disk. Finally, L and Ma are the aerodynamic lift and moment acting on the airfoil,

and Mf is the moment associated with friction, see Eq. (2.4).

3.3.1 Results of the rotating disk study

To echo the study of the lumped mass friction system, the analysis of the system

of Fig. 1.3 and 1.4 was carried out for Id /I= 0.05. Further, the other system parameter

were set to m = 20.0 kg/m; I+Id= 1.25 kg m, kh= 1.8 N/m2; ka= 1.25 N, a = 0.1 m, and

c = 1 m. Thus, the behavior of the airfoil when the disk is stuck is identical to the one

obtained by Jadic et al.12 The equations of motion were nondimensionalized by using the

chord length and the time needed for the flow to pass through the airfoil. The system was

then analyzed right at the flutter speed of the stuck system (nondim. V. = 2.02), where a

LCO naturally occurs.

From the time history of the response in stuck mode, it was determined that the

disk would be stuck at all times if u > 0.006. Accordingly, the analysis of the airfoil with
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the rotating disk was conducted for ¢u < 0.006. The stiffness kd was varied and the steady

state response of the system was determined by numerically integrating the equations of

motion (structural and aerodynamic) from a set of small initial conditions. Shown in Fig.

3.3-3.8 are the largest responses of the pitching, plunging, and torsional degrees-of-

freedom for /u = 0.001 - 0.006. Note that the response of the system in stuck mode (or

without the disk) is also shown as "h stuck" and "alpha stuck", see Jadic et al.' 2

It is seen in these figures that the responses are below their stuck levels for low

values of the stiffness kd and decrease further as kd is increased. A minimum of both

pitching and plunging responses is obtained at an intermediate value of kd but it is

immediately followed by a sharp rise (especially for the smaller values of U) of all

response amplitudes indicative of the resonance of the torsional disk system, i.e. when its

natural frequency is very close to the flutter frequency. This observation is in complete

agreement with the "tuned damper" discussion of Agelastos 8. Increasing further the

stiffness kd takes the system out of resonance and all three responses decrease slowly

toward their stuck configuration levels.
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disk) as a function of the stiffness kd, a =0.006



74

To condense further the results of Fig. 3.5 through 3.10, it was decided to record

for each value of ,p both the minimum and maximum values of the pitching and

plunging amplitudes over the domain kd c [0, o) . The evolution of the minimum

amplitude of the plunging and pitching motions with increasing coefficient of friction is

shown in Fig. 3.11. It is seen that the benefit of friction is most significant for low

coefficients of friction as the corresponding minimum amplitudes of response are well

below the stuck values from Ref. 12. But the penalty for this choice is a risk of very high

amplitudes, see Fig. 3.12 for the maximum amplitudes, as the minimum and maximum

amplitudes occur within a very narrow range of kd values.

The trend of the minimum amplitudes, see Fig. 3.11, i.e. a monotonic decrease

with decreasing coefficient of friction suggests the analysis of the frictionless system, i.e.

with /uD =/Is = 0. Interestingly, it was found that the corresponding airfoil motions

converge to large amplitude LCOs when kd is larger than 0.01685 N/mi but the response

appears to diverge for kd _<0.01685 N/m. It is tentatively suggested that this behavior

originates from a difference in flutter speeds of the continuously sticking and frictionless

slipping systems (as discussed in connection with the flat plate in Chapter 2) and the

limited domain of stable LCO of the NACA0O 12 airfoil in the absence of friction.

The character of the various stable limit cycle was also investigated, see Fig.

3.13. It is seen that single frequency stick slip solutions e.g. see Fig. 3.14, are found in the

most of the domain with the exception of the values of kd and u that yield large
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torsional responses. In that zone, the motions are primarily single frequency continuous

slip motion e.g. see Fig. 3.15, with some rare multiple frequency solutions, e.g. see Fig.

3.16.

This characterization is expected: when a low torsional response is induced,

sticking is likely to occur while continuous slip motions will be seen for large rotations of

the disk. This latter situation occurs when the transfer of energy from the airfoil to the

disk takes place efficiently, i.e. for low values of u and for values of kd that induce a

torsional natural frequency close to the flutter frequency. Finally, the occurrence of

multiple frequency solution at the center of the single frequency continuous slip zone is

consistent with the analysis of Agelatos8 .

The pattern of the vortices forming the wake was finally analyzed. It was found

that these patterns clearly parallel the steady state motions; they form a perfect harmonic

arrangement for single frequency solutions, see Fig. 3.15(c) but exhibit beating when the

system response is dictated by multiple frequencies, see Fig. 3.16(c).
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CHAPTER 4

CONCLUSIONS

The focus of this thesis has been on the assessment of the effects of internal

friction on the response of aeroelastic systems exhibiting either explosive flutter or limit

cycle oscillations.

In the first part of this thesis, a flat-plate airfoil model is considered which

supports a torsional friction device composed of a disk flexibly connected to the plate by

a torsional spring and squeezed between two rough surfaces. The behavior of this system

is studied when placed in a uniform, inviscid and incompressible flow. A stability

analysis of the system with the disk in either continuous sticking or frictionless slipping

modes was carried out first to assess the expected stability domains. It was shown and

justified that the system in slip mode exhibits instabilities at earlier flow velocities than

its stuck counterpart. This property allows for the existence of both super- and subcritical

limit cycle oscillations. While the subcritical limit cycles were observed to be unstable, a

zone of stable supercritical limit cycle oscillations was found that extends about 3% past

the flutter speed of the system without the friction device. This gain shows a good

stabilization property since the moment of inertia of the selected friction device system is

only 5% of the moment of inertia of the plate. The observed limit cycles exhibit either

continuous slip or stick slip behaviors and are either single frequency (periodic) or

multiple frequency (aperiodic or chaotic) with the latter ones appearing primarily at the
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highest flow speeds and for the highest frequencies of the torsional friction device. The

above results were obtained by time marching the plate equations of motions with a

rational approximation of the Theodorsen function but a harmonic balance approach was

also developed that led to very good approximations of the single frequency continuous

slip limit cycle oscillations.

The second part of this thesis focused on the response of a NACA0012 airfoil

placed in a uniform inviscid and incompressible air flow and supporting either the same

frictional device as the flat plate or a block sliding in a rough internal track. This airfoil

was shown in earlier studies to exhibit limit cycle oscillations at and slightly above its

flutter speed without any frictional device. The study of this system with a frictional

device provides thus a basis for the assessment of the potential effects of friction on

aeroelastic systems exhibiting aero-driven limit cycles. The block moving in an internal

track was first considered to model friction in the system. While limit cycle oscillations

were observed, it was also shown that the block could become stuck at a position far from

its original one and thus would create a change of inertia sufficiently large to stabilize the

airfoil. This effect does not involve any dissipation due to friction and is thus not relevant

to the present effort. Accordingly, this frictional model was not considered further and

was replaced by its torsional counterpart (as in the flat plate analysis) which does not

suffer from the same defect. The results of time marching computations demonstrate that

friction can substantially decrease the level of the limit cycle oscillations, especially with

a low coefficient of friction, but that increases in the response are also possible,
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depending on the selection of the natural frequency of the torsional friction device. As in

the flat plate, continuous slip and stick slip solutions were observed most of which were

single frequency (periodic).

The results of this study demonstrate that friction can indeed provide a

stabilization of an impending flutter and can significantly decrease the amplitude of

existing limit cycle oscillations of aeroelastic systems with an appropriate selection of the

friction device parameters most notably natural frequency and coefficient of friction.
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